Chemistry

Basics

Given some element X\mathrm{X}

XZAX2Z2AX\begin{equation*}\begin{split} \ce{^{A}_{Z}X} \end{split}\end{equation*}
XA\begin{equation*}\begin{split} \ce{X-A} \end{split}\end{equation*}

Where

  • A=neutrons + protonsA = \text{neutrons + protons}
  • Z=protonsZ = \text{protons}
Cations
Positively (+) Charged
Anions
Negatively (−) Charged

Mnemonic

Cations are Pawsitive

Conventions on homework

When a question says, determine the energy of 1 ㏖ of photons, the unit will be ᴶ/㏖.

Units

1mol=6.022×1023\begin{equation*}\begin{split} 1 \pu{mol}&= {{6.022}} \times 10^{{23}}\end{split}\end{equation*}
1  amu  protons+  neutrons\begin{equation*}\begin{split} \small 1 \;\mathrm{amu} &\approx \;\text{protons} + \;\text{neutrons} \end{split}\end{equation*}

SI Prefixes

ValuePrefixSymbol
10110^{1}decada\mathrm{da}
10210^{2}hectoh\mathrm{h}
10310^{3}kilok\mathrm{k}
10610^{6}megaM\mathrm{M}
10910^{9}gigaG\mathrm{G}
101210^{12}teraT\mathrm{T}
ValuePrefixSymbol
10110^{-1}decid\mathrm{d}
10210^{-2}centic\mathrm{c}
10310^{-3}milim\mathrm{m}
10610^{-6}microμ\mathrm{\mu}
10910^{-9}nanon\mathrm{n}
101210^{-12}picop\mathrm{p}

Classification of Matter

Overview

Mixtures
Heterogeneous mixture

Where the prefix Hetero- means different

Homogeneous mixture

Where the prefix Homo- means same

The Atom and Nuclear Chemistry

Isotopes and Subatomic Particles

Electrons and Quantum Mechanics

Average Atomic Mass

If the average atomic mass of boron is 10.81  amu10.81\;\mathrm{amu}, what is the percent abundance of boron-11 (mass of 11.009306  amu11.009306\;\mathrm{amu}) if the only other isotope is boron-10 (mass of 10.012937  amu10.012937\;\mathrm{amu})? Given the formula for average atomic mass:

adv. mass=(percent abundance×mass)\begin{equation*}\begin{split} \small\text{adv. mass}\normalsize&= \sum \left(\small\text{percent abundance}\normalsize\times \small\text{mass}\normalsize\right)\\ \end{split}\end{equation*}

Therefore in summary, we are given the following known quantities

average atomic mass=10.81  amuboron-11 mass=11.009306  amuboron-10 mass=10.012937  amu\begin{equation*}\begin{split} \small\text{average atomic mass}\normalsize&= 10.81\;\mathrm{amu}\\ \small\text{boron-11 mass}\normalsize&= 11.009306\;\mathrm{amu}\\ \small\text{boron-10 mass}\normalsize&= 10.012937\;\mathrm{amu} \end{split}\end{equation*}

With the following unknown quantities

boron-11 % abundance=XB-11boron-10 % abundance=XB-10\begin{equation*}\begin{split} \small\text{boron-11 \% abundance}\normalsize&= X_{\small\text{B-11}\normalsize}\\ \small\text{boron-10 \% abundance}\normalsize&= X_{\small\text{B-10}\normalsize} \end{split}\end{equation*}

And asked to find the percent abundance of boron-11 (XB-11X_{\small\text{B-11}\normalsize}). Therefore our equation is

10.81  amuavgm=XB-11×11.009306  amuM1+XB-10×10.012937  amuM2avgm=XB-11×M1+XB-10×M2shorthand \small \begin{gather*} \underbrace{10.81\;\mathrm{amu}}_{\mathclap{\small\text{avg}\normalsize_m}} = X_{\small\text{B-11}\normalsize} \times \underbrace{11.009306\;\mathrm{amu}}_{\mathclap{\small\text{M}\normalsize_1}} + X_{\small\text{B-10}\normalsize} \times \underbrace{10.012937\;\mathrm{amu}}_{\mathclap{\small\text{M}\normalsize_2}}\\ \underbrace{\small\text{avg}\normalsize_m = X_{\small\text{B-11}\normalsize} \times M_1 + X_{\small\text{B-10}\normalsize} \times M_2}_{\small\text{shorthand}\normalsize} \end{gather*}

We have two unknowns, but luckily we can use the following fact/relation and therefore express the percent abundance of boron-10 in terms of the percent abundance of boron-11

XB-11+XB-10=100%=1XB-10=1XB-11\begin{equation*}\begin{split} X_{\small\text{B-11}\normalsize} + X_{\small\text{B-10}\normalsize} = 100\% = 1\\ X_{\small\text{B-10}\normalsize} = 1 - X_{\small\text{B-11}\normalsize} \end{split}\end{equation*}

Therefore

avgm=XB-11M1+XB-10M2avgm=XB-11M1+(1XB-11)M2avgm=XB-11M1+M2XB-11M2avgmM2=XB-11(M1M2)avgmM2M1M2=XB-11XB-11=avgmM2M1M2=10.81  amu10.012937  amu11.009306  amu10.012937  amu0.7995decimal formmultiply by 100 to get percentage79.95%\begin{equation*}\begin{split} \small \small\text{avg}\normalsize_m &= X_{\small\text{B-11}\normalsize} M_1 + X_{\small\text{B-10}\normalsize} M_2\\ \small\text{avg}\normalsize_m &= X_{\small\text{B-11}\normalsize} M_1 + \left(1 - X_{\small\text{B-11}\normalsize}\right) M_2\\ \small\text{avg}\normalsize_m &= X_{\small\text{B-11}\normalsize} M_1 + M_2 - X_{\small\text{B-11}\normalsize} M_2\\ \small\text{avg}\normalsize_m - M_2 &= X_{\small\text{B-11}\normalsize} \left(M_1 - M_2\right)\\ \frac{\small\text{avg}\normalsize_m - M_2}{M_1 - M_2}&= X_{\small\text{B-11}\normalsize}\\ \therefore X_{\small\text{B-11}\normalsize} &= \frac{\small\text{avg}\normalsize_m - M_2}{M_1 - M_2}\\ &= \frac{10.81\;\mathrm{amu} - 10.012937\;\mathrm{amu}}{11.009306\;\mathrm{amu} - 10.012937\;\mathrm{amu}}\\ &\approx \underbrace{0.7995}_{\mathclap{ \begin{gathered} \small\text{decimal form}\normalsize\\ \small\text{multiply by $100$ to get percentage}\normalsize\end{gathered} }}\\ &\approx 79.95\% \end{split}\end{equation*}

But we aren't done, we have to compute significant figures.

XB-11=10.81  amu10.012937  amu2 sig decimal places11.009306  amu10.012937  amu8 sig decimal places}  2 sig figs \begin{gather*} \small X_{\small\text{B-11}\normalsize} = \begin{rcases} \frac{ \overbrace{10.81\;\mathrm{amu} - 10.012937\;\mathrm{amu}}^{\text{2 sig decimal places}} }{ \underbrace{11.009306\;\mathrm{amu} - 10.012937\;\mathrm{amu}}_{\text{8 sig decimal places}} }\\ \end{rcases}\therefore\;\small\text{2 sig figs}\normalsize\end{gather*}

Therefore, we round our answer to 2 sig figs, yielding 80.%80.\%

Molecules and Compounds

Terms

Electronegativity
Can be used to to determine type of bond based on electronegativity difference.
Ionic Bond
Covalent Bond
Polar Covalent Bond
Sharing of electrons.
Hydrogen Bond
Hydrogen is bonded with an electronegative element.

Prefixes

PrefixValue
mono-11
di-22
tri-33
tetra-44
penta-55
PrefixValue
hexa-66
hepta-77
octa-88
nona-99
deca-1010

Formula Summary

Formal Charge (Option 1)

Given some element X\ce{X} which has vev_e number of valance electrons, and a lewis diagram of bonded (beb_e) electrons and non-bonded (fef_e) electrons, the formal charge for the given element in the lewis structure is

FC=vefebe2\begin{equation*}\begin{split} \mathrm{FC} &= v_e - f_e - \frac{b_e}{2}\end{split}\end{equation*}

For the given quantities

FC=Formal Changeve=Valence electrons (from element)fe=Non-bonded (free) electrons (from diagram)be=Bonded Valence electrons (from diagram)\begin{equation*}\begin{split} \small\text{FC}\normalsize&= \small\text{Formal Change}\normalsize\\ v_e &= \small\text{Valence electrons (from element)}\normalsize\\ f_e &= \small\text{Non-bonded (free) electrons (from diagram)}\normalsize\\ b_e &= \small\text{Bonded Valence electrons (from diagram)}\normalsize\end{split}\end{equation*}

Formal Charge (Option 2)

Given some element X\ce{X} which has vev_e number of valance electrons, and a lewis diagram of some number of bonds (bb) and dots (dd), the formal charge for the given element in the lewis structure is

FC=ve(b+d)\begin{equation*}\begin{split} \mathrm{FC} &= v_e - (b + d) \end{split}\end{equation*}

For the given quantities

FC=Formal Changeve=Valence electrons (from element)b=Number of bonds (from diagram)d=Number of dots (from diagram)\begin{equation*}\begin{split} \small\text{FC}\normalsize&= \small\text{Formal Change}\normalsize\\ v_e &= \small\text{Valence electrons (from element)}\normalsize\\ b &= \small\text{Number of bonds (from diagram)}\normalsize\\ d &= \small\text{Number of dots (from diagram)}\normalsize\end{split}\end{equation*}

Note: each bond is 2 electrons, but counts as one bond.

Polyatomic Ions

Remembering the number of oxygens
General

Given a set of oxygens in increasing order

{OXLowest,OXLower,OXHigher,OXHighest} \set{\ce{ O_{\small\text{Lowest}\normalsize}, O_{\small\text{Lower}\normalsize}, O_{\small\text{Higher}\normalsize}, O_{\small\text{Highest}\normalsize} }}

Where

{Lowest<Lower<Higher<Highest} \set{ \mathrm{Lowest} < \mathrm{Lower} < \mathrm{Higher} < \mathrm{Highest} }

For example

{OX1,OX2,OX3,OX4} \set{\ce{ O_1, O_2, O_3, O_4 }}

Given some element or compound X\ce{X} ionically bonded with such

{XOXLowest,XOXLower,XOXHigher,XOXHighest} \set{\ce{ XO_{\small\text{Lowest}\normalsize}, XO_{\small\text{Lower}\normalsize}, XO_{\small\text{Higher}\normalsize}, XO_{\small\text{Highest}\normalsize} }}

For example

{ClOX1X,ClOX2X,ClOX3X,ClOX4X} \set{\ce{ ClO_1^{-}, ClO_2^{-}, ClO_3^{-}, ClO_4^{-} }}

The following table denotes the naming conventions therein

PrefixPrefix Meaning

(relative to suffix)
SuffixOxygen OrderExample
FormulaName
Per-More than-ateHighest #ClOX4X\ce{ClO_4^{-}}Perchlorate
-ateHigher #ClOX3X\ce{ClO_3^{-}}Chlorate
-iteLower #ClOX2X\ce{ClO_2^{-}}Chlorite
Hypo-less than-iteLowest #ClOX\ce{ClO^{-}}Hypochlorite
Oxygen vs No-Oxygen Comparison
PrefixSuffixMeaningExampleName
Per--ateSOX5X2\ce{SO_5^{2-}} or SX2OX8X2\ce{S_2O_8^{2-}}Persulfate
-ateSOX4X2\ce{SO_4^{2-}}Sulfate
-iteSOX3X2\ce{SO_3^{2-}}Sulfite
Hypo--iteSOX2X2\ce{SO_2^{2-}}Hyposulfite
-ideNo oxygennon-metalSX2\ce{S^{2-}}Sulfide

In summary

Per*ate


Greater than

  • *ate
  • *ite
  • Hypo*ite

*ate


Less than

  • Per*ate

Greater than

  • *ite
  • Hypo*ite

*ite


Less than

  • Per*ate
  • *ate

Greater than

  • Hypo*ite

Hypo*ite


Less than

  • Per*ate
  • *ate
  • *ite

Generally

per-ateUsed in the ion with the largest number of oxygen atoms
-ate-itePolyatomic ions of oxygen
hypo-iteUsed in the ion with the lowest number of oxygen atoms
-ideNon-metal, no oxygens

Determining The Charge

Warning

Phosphate (POX4X3\ce{PO_4^{3-}}) is the only one that violates this rule!

Example for Nitrate
Example for Cyanide
Example for Oxalate
Example for Hydrogen Carbonate
Source
Ionic Lewis Structures
Ionic Lewis Structures
Examples
Lewis structure for sulfate ion

Notes

Periodic Properties of the Elements

Note, electron affinity is not the same as electronegativity!

Terms

Isoelectronic
Atoms with the same number of electrons.
Ionization energy
Predict Metallic Character Based on Periodic Trends

Expanded Octet (Exceptions to the Octet Rule)

All non-metals from period 3 to period 8 of the Periodic Table, can have expanded octets.

Quantum Mechanical Models of the Atom

The Electromagnetic Spectrum

Terms

Pauli Exclusion Principle
No two electrons in an atom can have the same four quantum numbers.
Pauli’s Principle prevents two electrons with the same spin from existing in the same subshell, each subshell will be filled with one spin direction before they are filled with the opposite spin. This is the second of Hund’s Rules.
Aufbau Principle
This pattern of orbital filling is known as the aufbau principle (the German word aufbau means “build up”).
Hund’s rule
When filling degenerate orbitals, electrons fill them singly first, then with parallel spins.
I.e. start by filling boxes with single 'upward' arrows, and then once all of such boxes are maxed out, then you add double arrows pointing in opposite directions.
Pauli’s Principle prevents two electrons with the same spin from existing in the same subshell, each subshell will be filled with one spin direction before they are filled with the opposite spin. This is the second of Hund’s Rules.
Coulomb’s Law
E=14πε0q1  q2r\begin{equation*}\begin{split} \mathrm{E} &= \frac{1}{4\pi\varepsilon_0}\cdot\frac{q_1\;q_2}{r}\end{split}\end{equation*}

Aufbau Principle

Hund’s rule

Pauli's Exclusion Principle

Each election has a unique set of four quantum numbers (i.e. see quantum numbers). They are

  • n\mathrm{n}
  • l\mathrm{l}
  • ml\mathrm{m}_l
  • ms\mathrm{m}_s

Overview

Formulas

f=ν=cλ\begin{equation*}\begin{split} \mathrm{f} = \nu &= \frac{c}{\lambda}\end{split}\end{equation*}
λ=speedfrequency\begin{equation*}\begin{split} \mathrm{\lambda} = \frac{\small\text{speed}\normalsize}{\small\text{frequency}\normalsize}\end{split}\end{equation*}
E=h×f=hcλ\begin{equation*}\begin{split} \mathrm{E} &= \mathrm{h}\times\mathrm{f}\\ &= \mathrm{h}\frac{\mathrm{c}}{\lambda}\end{split}\end{equation*}
T=1f\begin{equation*}\begin{split} \mathrm{T} &= \frac{1}{f}\end{split}\end{equation*}
λ=cf\begin{equation*}\begin{split} \lambda &= \frac{c}{f}\end{split}\end{equation*}

Values

NameSymbolUnitDescriptionRange
Wavelengthλ\mathrm{\lambda}Any unit for distanceDistance between two analogous pointsAlways Positive
Frequencyff or ν\nu(nu)=1 cyclesecond㎐ = \frac{\text{1 cycle}}{\text{second}}s1\mathrm{s}^{-1}Number of cyclesAlways Positive
EnergyE\mathrm{E}J\mathrm{J}(joule)Amount of energy (E\mathrm{E}) in a light packet

Constants

NameSymbolUnitValue
Speed of Lightc\mathrm{c}fracmathrmmmathrms\\frac{\\mathrm{m}}{\\mathrm{s}}c=3.00×108fracmathrmmmathrms\mathrm{c} = {{3.00}} \times 10^{{8}}\\frac{\\mathrm{m}}{\\mathrm{s}}
Planck's constanth\mathrm{h}
  • Energy multiplied by time
  • joule-seconds
  • Js\mathrm{J}\cdot\mathrm{s}
h=6.626×1034  Js\mathrm{h} = {{6.626}} \times 10^{{-34}}\;\mathrm{J}\cdot\mathrm{s}

Other Formulas

de Broglie Relation
λ=hmvwherem=massv=velocityν  (nu)\begin{equation*}\begin{split} \lambda &= \frac{\mathrm{h}}{\mathrm{m}\mathrm{v}}\\ \text{where}&\\ m &= \text{mass}\\ v &= \text{velocity} \neq \nu\;\text{(nu)} \end{split}\end{equation*}
Heisenberg's Uncertainty Principle
Δx×mΔvh4π\begin{equation*}\begin{split} \Delta{x} \times \mathrm{m} \Delta{v} \geq \frac{\mathrm{h}}{4\pi}\end{split}\end{equation*}

Where

  • Δx\Delta{x} is the uncertainty in position.
  • Δv\Delta{v} is the uncertainty in velocity.
  • m\mathrm{m} is the mass of the particle.
  • h\mathrm{h} is the plank's constant.

In general it states that the more you know about an electrons position, the less you know about it's velocity.

Energy of an Electron in an Orbital with Quantum Number n\mathrm{n} in a Hydrogen Atom
En=2.18×1018J(1n2)\begin{equation*}\begin{split} E_n &= {{-2.18}} \times 10^{{-18}}\mathrm{J} \left(\frac{1}{n^2}\right) \end{split}\end{equation*}
Energy of an Electron in an Orbital with Quantum Number n\mathrm{n} for any atom
En=2.18×1018J(1n2)Z2\begin{equation*}\begin{split} E_n &= {{-2.18}} \times 10^{{-18}}\mathrm{J} \left(\frac{1}{n^2}\right) \cdot \mathrm{Z}^2 \end{split}\end{equation*}

Where Z\mathrm{Z} is the atomic number of the given element.

Change in Energy That Occurs in an Atom When It Undergoes a Transition between Levels (Further Details)

ninitialn_{\small\text{initial}} and nfinaln_{\small\text{final}}

ΔE=2.18×1018J(1nf21ni2)\begin{equation*}\begin{split} \Delta{E} &= {{-2.18}} \times 10^{{-18}}\mathrm{J} \left(\frac{1}{n^2_f}- \frac{1}{n^2_i}\right) \end{split}\end{equation*}
  • If ΔE\Delta{E} is negative, energy is being released.
  • If ΔE\Delta{E} is positive, energy is being absorbed.
Ionization Energy
IEn,Big Jump1=# of valance electrons=Element row #\begin{equation*}\begin{split} \mathrm{IE}_{n,\small\text{Big Jump}\normalsize} -1 &= \small\text{\# of valance electrons}\normalsize\\ &= \small\text{Element row \#}\normalsize\end{split}\end{equation*}

Where

  • nn is the electron number
  • Big jump\small\text{Big jump}\normalsize the point on the table where you see the highest difference/delta.

Atomic Spectroscopy

The Principal Quantum Number (n) (Hydrogen Atom)

For the hydrogen atom, the energy of an electron in an orbital with quantum number nn is given by

En=2.18×1018J  1n2\begin{equation*}\begin{split} E_n = {{-2.18}} \times 10^{{-18}}\mathrm{J}\;\frac{1}{n^2}\end{split}\end{equation*}

Therefore the difference in energy is given by the following

ΔE=ΔEFinalΔEInitial=(2.18×1018J  1nf2)(2.18×1018J  1ni2)=2.18×1018J  1nf2+2.18×1018J  1ni2=2.18×1018J  (1nf21ni2)\begin{equation*}\begin{split} \Delta E &= \Delta E_{\small\text{Final}\normalsize} - \Delta E_{\small\text{Initial}\normalsize}\\ &= \left({{-2.18}} \times 10^{{-18}}\mathrm{J}\;\frac{1}{{n_f}^2}\right) - \left({{-2.18}} \times 10^{{-18}}\mathrm{J}\;\frac{1}{{n_i}^2}\right)\\ &= {{-2.18}} \times 10^{{-18}}\mathrm{J}\;\frac{1}{{n_f}^2}+ {{2.18}} \times 10^{{-18}}\mathrm{J}\;\frac{1}{{n_i}^2}\\ &= {{-2.18}} \times 10^{{-18}}\mathrm{J}\; \left(\frac{1}{{n_f}^2}- \frac{1}{{n_i}^2}\right) \end{split}\end{equation*}
The Principal Quantum Number (n) (Any Atom)

For the hydrogen atom, the energy of an electron in an orbital with quantum number nn is given by

TODO

En=2.18×1018J(1n2)Z2\begin{equation*}\begin{split} E_n &= {{-2.18}} \times 10^{{-18}}\mathrm{J} \left(\frac{1}{n^2}\right) \cdot \mathrm{Z}^2 \end{split}\end{equation*}

Where Z\mathrm{Z} is the atomic number of the given element.

Electron Configuration

Traditional Chart
Better Method
Examples
Electron configuration for 26Fe_{26}\mathrm{Fe}
1sX2 2sX2 2pX6 3sX2 3pX6Equal to Argon 4sX2 3dX6=[Ar] 4sX2 3dX6\begin{equation*}\begin{split} \ce{\underbrace{1s^2 2s^2 2p^6 3s^2 3p^6}_{\small\text{Equal to Argon}\normalsize} 4s^2 3d^6} &= \ce{[Ar] 4s^2 3d^6} \end{split}\end{equation*}

Since the electron configuration for Argon is

[Ar]=1sX2 2sX2 2pX6 3sX2 3pX6\begin{equation*}\begin{split} \ce{[Ar] = 1s^2 2s^2 2p^6 3s^2 3p^6} \end{split}\end{equation*}
Electron configuration for 26Fe+2_{26}\mathrm{Fe}^{+2}

Beginning with the electron configuration for 26Fe_{26}\mathrm{Fe}

1s2  2s2  2p6  3s2  3p6Equal to Argon  4s2  3d6Which should we remove 2 e from?(4s2 or 3d6)?=[Ar] 4sX2   3dX6Which should we remove 2 e from?(4s2 or 3d6)?\begin{equation*}\begin{split} \underbrace{1s^2\; 2s^2\; 2p^6\; 3s^2\; 3p^6}_{\small\text{Equal to Argon}\normalsize}\; \overbrace{4s^2\; 3d^6}^{\mathclap{ \begin{gathered} \small\text{Which should we remove 2 $\mathrm{e}^{-}$ from?}\normalsize\\ \small\text{($4s^2$ or $3d^6$)?}\normalsize\\ \end{gathered} }} &= \ce{[Ar] \underbrace{4s^2\; 3d^6}_{\mathclap{ \begin{gathered} \small\text{Which should we remove 2 $\mathrm{e}^{-}$ from?}\normalsize\\ \small\text{($4s^2$ or $3d^6$)?}\normalsize\\ \end{gathered} }} } \end{split}\end{equation*}

Remove the electrons from the term with the higher electron state. Warning! Do not just remove the electrons from the rightmost term since the rightmost term may be a lower electron state. For instance given 4s2  3d64s^2\; 3d^6

  • 4s24s^2 is in a higher electron state
  • 3d63d^6 is in a lower electron state

Alternatively, to compute the lowest energy orbital, add the principle quantum number (nn) to the The angular momentum quantum number (ll) to get the orbital with the lowest energy. Therefore

orbital with the lowest energy=Omin=n+l\begin{equation*}\begin{split} \small\text{orbital with the lowest energy}\normalsize&= O_{\small\text{min}\normalsize} = n + l\\ \end{split}\end{equation*}

Given 4sX2\ce{4s^2} and 3dX6\ce{3d^6}

4sX2  {n=4i=0  Omin=4\begin{equation*}\begin{split} \ce{4s^2}\;\begin{dcases} n &= 4\\ i &= 0\\ \therefore\; O_{\small\text{min}\normalsize} &= 4 \end{dcases}\end{split}\end{equation*}
3dX6  {n=3i=2  Omin=5\begin{equation*}\begin{split} \ce{3d^6}\; \begin{dcases} n &= 3\\ i &= 2\\ \therefore\; O_{\small\text{min}\normalsize} &= 5 \end{dcases}\end{split}\end{equation*}

NVM this is an exception to the rule...

TODO move this somewhere else...

As shown

1s2  2s2  2p6  3s2  3p6  4s(22)higher stateremove 2e  3d6lower state  =[Ar]  4s(22)higher stateremove 2e  3d6lower state1s2  2s2  2p6  3s2  3p6  3d6unchanged  =[Ar]  3d6unchanged\begin{equation*}\begin{split} \underbrace{1s^2\; 2s^2\; 2p^6\; 3s^2\; 3p^6}\; \overbrace{4s^{\left(2 - 2\right)}}^{ \mathclap{ \begin{gathered} \small\text{higher state}\normalsize\\ \small\text{remove $2\mathrm{e^{-}}$}\normalsize\end{gathered} }}\; \underbrace{3d^6}_{ \mathclap{\small\text{lower state}\normalsize}}\; &= [\mathrm{Ar}]\; \overbrace{4s^{\left(2 - 2\right)}}^{ \mathclap{ \begin{gathered} \small\text{higher state}\normalsize\\ \small\text{remove $2\mathrm{e^{-}}$}\normalsize\end{gathered} }}\; \underbrace{3d^6}_{ \mathclap{\small\text{lower state}\normalsize}}\\\\ \underbrace{1s^2\; 2s^2\; 2p^6\; 3s^2\; 3p^6}\; \underbrace{3d^6}_{ \mathclap{\small\text{unchanged}\normalsize}}\; &= [\mathrm{Ar}]\; \underbrace{3d^6}_{ \mathclap{\small\text{unchanged}\normalsize}} \end{split}\end{equation*}

Therefore the electron configuration for 26Fe+2_{26}\mathrm{Fe}^{+2} is:

1sX2 2sX2 2pX6 3sX2 3pX6 3dX6=[Ar] 3dX6\begin{equation*}\begin{split} \ce{1s^2 2s^2 2p^6 3s^2 3p^6 3d^6} &= \ce{[Ar] 3d^6} \end{split}\end{equation*}
Electron configuration for 24Cr_{24}\mathrm{Cr}

It would appear that the electron configuration for 24Cr_{24}\mathrm{Cr} would be

1s2  2s2  2p6  3s2  3p6Equal to Argon  4s2  3d4this is wrong!  =[Ar]  4s2  3d4this is wrong!  \begin{equation*}\begin{split} \overbrace{1s^2\; 2s^2\; 2p^6\; 3s^2\; 3p^6}^{\small\text{Equal to Argon}\normalsize}\; \underbrace{4s^2\; 3d^4}_{ \mathclap{\small\text{this is wrong!}\normalsize}}\; &= [\mathrm{Ar}]\; \underbrace{4s^2\; 3d^4}_{ \mathclap{\small\text{this is wrong!}\normalsize}}\; \end{split}\end{equation*}

But this is wrong! It's actually

1s2  2s2  2p6  3s2  3p6Equal to Argon  4s1  3d5notice the superscripts  =[Ar]  4s1  3d5notice the superscripts  \begin{equation*}\begin{split} \overbrace{1s^2\; 2s^2\; 2p^6\; 3s^2\; 3p^6}^{\small\text{Equal to Argon}\normalsize}\; \underbrace{4s^1\; 3d^5}_{ \mathclap{\small\text{notice the superscripts}\normalsize}}\; &= [\mathrm{Ar}]\; \underbrace{4s^1\; 3d^5}_{ \mathclap{\small\text{notice the superscripts}\normalsize}}\; \end{split}\end{equation*}
How-tos
What are the valence electrons?

Given

1sX2 2sX2 2pX6 3sX2 3pX4\begin{equation*}\begin{split} \ce{1s^2 2s^2 2p^6 3s^2 3p^4} \end{split}\end{equation*}

The valance electrons will be the ones in the highest energy state. Therefore

1s2  2s2  2p6Core electrons  3s2  3p4Highest stateTherefore these are the valence electrons\begin{equation*}\begin{split} \overbrace{1s^2\; 2s^2\; 2p^6}^{\mathclap{ \small\text{Core electrons}\normalsize}}\; \underbrace{3s^2\;3p^4}_{\mathclap{ \begin{gathered} \small\text{Highest state}\normalsize\\ \small\text{Therefore these are the valence electrons}\normalsize\end{gathered} }} \end{split}\end{equation*}

Therefore there are 66 valence electrons.

Given

[Ne] 3sX2 3pX2\begin{equation*}\begin{split} \ce{[Ne] 3s^2 3p^2} \end{split}\end{equation*}

The valance electrons will be the ones in the highest energy state. Therefore

[Ne]3s23p2Highest stateTherefore these are the valence electrons\begin{equation*}\begin{split} [\mathrm{Ne}] \underbrace{3s^2 3p^2}_{\mathclap{ \begin{gathered} \small\text{Highest state}\normalsize\\ \small\text{Therefore these are the valence electrons}\normalsize\end{gathered} }} \end{split}\end{equation*}

Therefore there are 44 valence electrons.

Quantum Numbers

Overview
SymbolDescription
n\mathrm{n}The principle quantum number
llThe angular momentum quantum number
m1\mathrm{m}_1The magnetic quantum number
ms\mathrm{m}_sThe spin quantum number
The Principle Quantum Number (n\mathrm{n}
Value of n\mathrm{n}Value of llOrbital Sublevel
n=1\mathrm{n} = 1l=0l = 01s1\mathrm{s}
n=2\mathrm{n} = 2l=0l = 0l=1l = 12s2\mathrm{s}2p2\mathrm{p}
n=3\mathrm{n} = 3l=0l = 0l=1l = 1l=2l = 23s3\mathrm{s}3p3\mathrm{p}3d3\mathrm{d}
n=4\mathrm{n} = 4l=0l = 0l=1l = 1l=2l = 2l=3l = 34s4\mathrm{s}4p4\mathrm{p}4d4\mathrm{d}4f4\mathrm{f}
Angular Momentum Quantum Number
ValueResult
l=0l = 0s\mathrm{s}
l=1l = 1p\mathrm{p}
l=2l = 2d\mathrm{d}
l=3l = 3f\mathrm{f}
Value of llValue of ml\mathrm{m_l}
l=0l = 0ml=0\mathrm{m_l} = 0
l=1l = 1ml=1\mathrm{m_l} = -1ml=0\mathrm{m_l} = 0ml=1\mathrm{m_l} = 1
l=2l = 2ml=2\mathrm{m_l} = -2ml=1\mathrm{m_l} = -1ml=0\mathrm{m_l} = 0ml=1\mathrm{m_l} = 1ml=2\mathrm{m_l} = 2
l=2l = 2ml=3\mathrm{m_l} = -3ml=2\mathrm{m_l} = -2ml=1\mathrm{m_l} = -1ml=0\mathrm{m_l} = 0ml=1\mathrm{m_l} = 1ml=2\mathrm{m_l} = 2ml=3\mathrm{m_l} = 3
Summary
ln1\begin{equation*}\begin{split} l \leq \mathrm{n} - 1 \end{split}\end{equation*}
lmll\begin{equation*}\begin{split} -l \leq \mathrm{m_l} \leq l \end{split}\end{equation*}
Useful Formulas

The equation for a maximum number of electrons a given energy level can hold given some value for nn

maxe=2n2\begin{equation*}\begin{split} \text{max}_{\mathrm{e}^{-}} &= 2n^2 \end{split}\end{equation*}

How many orbitals are possible given some value for nn

maxorbitals=n2\begin{equation*}\begin{split} \text{max}_{\small\text{orbitals}\normalsize} &= n^2 \end{split}\end{equation*}
Examples

Light

Interference and Diffraction
Constructive Interference

If two waves of equal amplitude are in phase when they interact—that is, they align with overlapping crests—a wave with twice the amplitude results. This is called constructive interference.

Destructive Interference

If two waves are completely out of phase when they interact—that is, they align so that the crest from one overlaps with the trough from the other—the waves cancel by destructive interference.

Mathematics

Algebra

Miscellaneous

Functional Utilities & Notation Conveniences

Right to Left Evaluation

fx=f(x)\begin{equation*}\begin{split} f \triangleleft x &= f(x) \end{split}\end{equation*}
fgx=f(g(x))=fgx\begin{equation*}\begin{split} f \circ g \triangleleft x &= f(g(x)) \\ &= f \triangleleft g \triangleleft x \end{split}\end{equation*}

Left to Right Evaluation

xf=f(x)\begin{equation*}\begin{split} x \triangleright f &= f(x) \end{split}\end{equation*}

Derivative Shorthand

δf(x)=ddxf(x)=f(x)\begin{equation*}\begin{split} \delta f(x) &= \frac{\mathrm{d}}{\mathrm{d}x} f(x) = f^\prime(x) \end{split}\end{equation*}

For this notation, the derivative with respect to a given variable, is implicit.

Radians & Radian Conversion

Constants

τ=2π=360π=12τ=180\begin{equation*}\begin{split} \tau &= 2\pi = 360^{\circ} \\ \pi &= \frac{1}{2}\tau = 180^{\circ} \end{split}\end{equation*}

Conversion

Given1=1360τ  rad1  rad=1τ360=1360τDegrees to Radiansx=x360τ  radRadians to Degreesx  rad=xτ360=x360τ=x180π\begin{equation*}\begin{split} \text{Given}\\ \textcolor{blue}{1}^{\circ} &= \frac{\textcolor{blue}{1}}{360}\tau \; {\displaystyle {\mathrm{rad}}} \\ \textcolor{blue}{1} \; \mathrm{rad} &= \frac{\textcolor{blue}{1}}{\tau}\cdot 360^{\circ} = \textcolor{blue}{1} \cdot \frac{360^{\circ}}{\tau}\\ \\\text{Degrees to Radians}\\ \textcolor{blue}{x^{\circ}} &= \frac{\textcolor{blue}{x}}{360}\tau \; {\displaystyle {\mathrm{rad}}} \\ \\\text{Radians to Degrees}\\ \textcolor{blue}{x} \; \mathrm{rad} &= \frac{\textcolor{blue}{x}}{\tau}\cdot 360^{\circ} \\ &= \textcolor{blue}{x} \cdot \frac{360^{\circ}}{\tau}\\ &= \textcolor{blue}{x} \cdot \frac{180^{\circ}}{\pi}\\ \end{split}\end{equation*}

Constants

ℯ (Euler's number)

e=n=01n!=limn(1+1n)n=limt0(1+t)1t\begin{equation*}\begin{split} \mathrm{e} &= \sum_{n = 0}^\infty \frac{1}{n!}\\ &= \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n \\ &= \lim_{t \to 0} \left(1 + t\right)^{\frac{1}{t}} \end{split}\end{equation*}

ex=1+x1!+x22!+x33!+=n=0xnn!=limn(1+xn)n\begin{equation*}\begin{split} \mathrm{e}^x &= 1 + \frac{x}{1!}+ \frac{x^2}{2!}+ \frac{x^3}{3!}+ \cdots \\ &= \sum_{n = 0}^\infty \frac{x^n}{n!}\\ &= \lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n \end{split}\end{equation*}

Algebra

Properties

ambn=am+n(am)n=amn=(an)m(ab)n=anbn(ab)n=(ba)nxnyn=(xy)nxyz=x(yz)(xy)z\begin{equation*}\begin{split} a^m \cdot b^n &= a^{m+n}\\ \left(a^m\right)^n &= a^{m\cdot\,n} = \left(a^n\right)^m\\ \left(a\cdot\,b\right)^n &= a^n \cdot b^n\\ \left(\frac{a}{b}\right)^{-n} &= \left(\frac{b}{a}\right)^n\\ \frac{x^n}{y^n}&= \left(\frac{x}{y}\right)^n\\ x^{y^z} &= x^{\left(y ^ z\right)} \neq \left(x^y\right)^z \end{split}\end{equation*}
x=x2x\begin{equation*}\begin{split} |x| &= \sqrt{x^2} \neq x \end{split}\end{equation*}
logβ(α)=γβγ=αβlogβ(N)=N  for all N>0logβ(βx)=x\begin{equation*}\begin{split} \log_{\beta}(\alpha) &= \gamma\\ \beta^{\gamma} &= \alpha\\ \beta^{\log_{\beta}(N)} &= N\;\text{for all $N > 0$}\\ \log_{\beta}(\beta^x) &= x \end{split}\end{equation*}

Trigonometry

The Unit Circle & Special Angles In Trig

Warning

Never use Pi (π\pi)! It makes (thinking in terms of) radians confusing, Tao (τ\tau) is what the enlightened trigonometer uses, and won't screw you over.

To easily memorize the special angles in trig, notice the repeating patterns on the above angles.

  • For values on the x-axis, anything over 14τ\frac{1}{4}\tau and under 34τ\frac{3}{4}\tau will be negative
  • For values on the y-axis, anything over 12τ\frac{1}{2}\tau will be negative
  • Diagonals will be ±22\pm \frac{\sqrt{2}}{2}, For ratios of 112τ\frac{1}{12}\tau on the sides, i.e. 112τ\frac{1}{12}\tau, 212τ\frac{2}{12}\tau, 412τ\frac{4}{12}\tau, 512τ\frac{5}{12}\tau, 712τ\frac{7}{12}\tau, 812τ\frac{8}{12}\tau, 1012τ\frac{10}{12}\tau, and 1112τ\frac{11}{12}\tau. Draw a circle and dot the point where it occurs (which is pretty easy since the above are simple ratios of a circle when expressed in terms of τ\tau). Then with regards to the xx and yy axis values:
    • The longer size will be ±32\pm \frac{\sqrt{3}}{2}
    • The shorter side will be ±12\pm \frac{1}{2}
    See the above examples.

Trigonometric Identities

Pythagorean Identities

cos2(θ)+sin2(θ)=1\begin{equation*}\begin{split} \cos^2(\theta) + \sin^2(\theta) = 1 \end{split}\end{equation*}
sec2(θ)tan2(θ)=1sec2(θ)=1+tan2(θ)\begin{equation*}\begin{split} \sec^2(\theta) - \tan^2(\theta) &= 1 \\ \sec^2(\theta) &= 1 + \tan^2(\theta) \end{split}\end{equation*}
csc2(θ)cot2(θ)=1csc2(θ)=1+cot2(θ)\begin{equation*}\begin{split} \csc^2(\theta) - \cot^2(\theta) &= 1 \\ \csc^2(\theta) &= 1 + \cot^2(\theta) \end{split}\end{equation*}

Sum and Difference Identities

cos(αβ)=cos(α)cos(β)+sin(α)sin(β)cos(α+β)=cos(α)cos(β)sin(α)sin(β)sin(αβ)=sin(α)cos(β)cos(α)sin(β)sin(α+β)=sin(α)cos(β)+cos(α)sin(β)tan(α+β)=tan(α)+tan(β)1tan(α)tan(β)tan(αβ)=tan(α)tan(β)1+tan(α)tan(β) \begin{equation*} \begin{split} \cos(\alpha - \beta) &= \cos(\alpha) \cdot \cos(\beta) + \sin(\alpha) \cdot \sin(\beta) \\ \cos(\alpha + \beta) &= \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta) \\ &\\ \sin(\alpha - \beta) &= \sin(\alpha) \cdot \cos(\beta) - \cos(\alpha) \cdot \sin(\beta) \\ \sin(\alpha + \beta) &= \sin(\alpha) \cdot \cos(\beta) + \cos(\alpha) \cdot \sin(\beta) \\ &\\ \tan(\alpha + \beta) &= \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha) \cdot \tan(\beta)}\\ \tan(\alpha - \beta) &= \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha) \cdot \tan(\beta)}\end{split} \end{equation*}

Cofunction Identities

sin(θ)=cos(14τθ)\begin{equation*}\begin{split} \sin(\theta) = \cos(\frac{1}{4}\tau - \theta) \end{split}\end{equation*}
cos(θ)=sin(14τθ)\begin{equation*}\begin{split} \cos(\theta) = \sin(\frac{1}{4}\tau - \theta) \end{split}\end{equation*}
tan(θ)=cot(14τθ)\begin{equation*}\begin{split} \tan(\theta) = \cot(\frac{1}{4}\tau - \theta) \end{split}\end{equation*}
cot(θ)=tan(14τθ)\begin{equation*}\begin{split} \cot(\theta) = \tan(\frac{1}{4}\tau - \theta) \end{split}\end{equation*}
csc(θ)=sec(14τθ)\begin{equation*}\begin{split} \csc(\theta) = \sec(\frac{1}{4}\tau - \theta) \end{split}\end{equation*}
sec(θ)=csc(14τθ)\begin{equation*}\begin{split} \sec(\theta) = \csc(\frac{1}{4}\tau - \theta) \end{split}\end{equation*}

Ratio Identities

tan(90x)=sin(90x)cos(90x)=cos(x)sin(x)=cot(x)cot(90x)=cos(90x)sin(90x)=sin(x)cos(x)=tan(x) \begin{equation*} \begin{split} \tan(90^\circ - x) & = \frac{\sin(90^\circ - x)}{\cos(90^\circ - x)}= \frac{\cos(x)}{\sin(x)}= \cot(x) \\ \\ \cot(90^\circ - x) & = \frac{\cos(90^\circ - x)}{\sin(90^\circ - x)}= \frac{\sin(x)}{\cos(x)}= \tan(x) \\ \end{split} \end{equation*}

Double-Angle Identities

sin(2α)=2sin(α)cos(α)cos(2α)=cos2(α)sin2(α)=12sin2(α)=2cos2(α)1tan(2α)=2tan(α)1tan2(α) \begin{equation*} \begin{split} \sin(2\alpha) &= 2\sin(\alpha)\cos(\alpha) \\ \cos(2\alpha) &= \cos^2(\alpha) - \sin^2(\alpha) \\ &= 1 - 2\sin^2(\alpha) \\ &= 2\cos^2(\alpha) - 1 \\ &\\ \tan(2\alpha) &= \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)}\end{split} \end{equation*}

Half-Angle Identities

sinα2=±1cos(α)2cosα2=±1+cos(α)2tanα2=±1cos(α)1+cos(α)=sin(α)1+cos(α)=1cos(α)sin(α) \begin{equation*} \begin{split} \sin \frac{\alpha}{2}&= \pm \sqrt{\frac{1 - \cos(\alpha)}{2}} \\ \cos \frac{\alpha}{2}&= \pm \sqrt{\frac{1 + \cos(\alpha)}{2}} \\ \tan \frac{\alpha}{2}&= \pm \sqrt{\frac{1 - \cos(\alpha)}{1 + \cos(\alpha)}} \\ &= \frac{sin(\alpha)}{1 + \cos(\alpha)}\\ &= \frac{1 - \cos(\alpha)}{sin(\alpha)}\end{split} \end{equation*}

Power-Reducing Identities

sin2(α)=1cos(2α)2cos2(α)=1+cos(2α)2tan2(α)=1cos(2α)1+cos(2α) \begin{equation*} \begin{split} \sin^2(\alpha) &= \frac{1 - \cos(2\alpha)}{2}\\ &\\ \cos^2(\alpha) &= \frac{1 + \cos(2\alpha)}{2}\\ &\\ \tan^2(\alpha) &= \frac{1 - \cos(2\alpha)}{1 + \cos(2\alpha)}\end{split} \end{equation*}

sinαcosα=12sin(2α)\begin{equation*}\begin{split} \sin\alpha\cdot\cos\alpha &= \frac{1}{2}\sin(2\alpha) \end{split}\end{equation*}

Product-to-Sum Identities

sin(α)cos(β)=12[sin(α+β)+sin(αβ)]cos(α)sin(β)=12[sin(α+β)sin(αβ)]cos(α)cos(β)=12[cos(α+β)+cos(αβ)]sin(α)sin(β)=12[cos(αβ)cos(α+β)] \begin{equation*} \begin{split} \sin(\alpha) \cdot \cos(\beta) &= \frac{1}{2}\Big[ \sin(\alpha + \beta) + \sin(\alpha - \beta) \Big] \\ \cos(\alpha) \cdot \sin(\beta) &= \frac{1}{2}\Big[ \sin(\alpha + \beta) - \sin(\alpha - \beta) \Big] \\ \cos(\alpha) \cdot \cos(\beta) &= \frac{1}{2}\Big[ \cos(\alpha + \beta) + \cos(\alpha - \beta) \Big] \\ \sin(\alpha) \cdot \sin(\beta) &= \frac{1}{2}\Big[ \cos(\alpha - \beta) - \cos(\alpha + \beta) \Big] \end{split} \end{equation*}

Sum-to-Product-Identities

sin(x)+sin(y)=2sin(x+y2)cos(xy2)cos(x)+cos(y)=2cos(x+y2)cos(xy2)sin(x)sin(y)=2cos(x+y2)sin(xy2)cos(x)cos(y)=2sincos(x+y2)sin(xy2) \begin{equation*} \begin{split} \sin(x) + \sin(y) &= 2 \cdot \sin\left( \frac{x + y}{2}\right) \cdot \cos\left( \frac{x - y}{2}\right) \\ \cos(x) + \cos(y) &= 2 \cdot \cos\left( \frac{x + y}{2}\right) \cdot \cos\left( \frac{x - y}{2}\right) \\ \sin(x) - \sin(y) &= 2 \cdot \cos\left( \frac{x + y}{2}\right) \cdot \sin\left( \frac{x - y}{2}\right) \\ \cos(x) - \cos(y) &= -2 \sin \cos\left( \frac{x + y}{2}\right) \cdot \sin\left( \frac{x - y}{2}\right) \end{split} \end{equation*}

Trigonometric Equations

Euler's Formula

eix=cos(x)+isin(x)\begin{equation*}\begin{split} e^{i x} &= \cos(x) + \mathrm{i}\sin(x) \end{split}\end{equation*}

e=n=01n!=limn(1+1n)n=limt0(1+t)1t\begin{equation*}\begin{split} \mathrm{e} &= \sum_{n = 0}^\infty \frac{1}{n!}\\ &= \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n \\ &= \lim_{t \to 0} \left(1 + t\right)^{\frac{1}{t}} \end{split}\end{equation*}

ex=1+x1!+x22!+x33!+=n=0xnn!=limn(1+xn)n\begin{equation*}\begin{split} \mathrm{e}^x &= 1 + \frac{x}{1!}+ \frac{x^2}{2!}+ \frac{x^3}{3!}+ \cdots \\ &= \sum_{n = 0}^\infty \frac{x^n}{n!}\\ &= \lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n \end{split}\end{equation*}

Coordinate & Number Systems

x=rcosθy=rsinθ\begin{equation*}\begin{split} x &= r \cdot \cos\,\theta \\ y &= r \cdot \sin\,\theta \\ \end{split}\end{equation*}

z=x+iy=r(cosθ+isinθ)=r  cis  θ\begin{equation*}\begin{split} z &= x + \mathrm{i}y \\ &= r \left(\cos\, \theta + \mathrm{i}\sin\, \theta\right)\\ & = r\;\mathrm{cis}\; \theta \\ \end{split}\end{equation*}
eix=cosx+isinxeix=r(cosθ+isinθ)(cosx+isinx)n=cos(nx)+isin(nx)\begin{equation*}\begin{split} e^{i x} &= \cos\, x + \mathrm{i}\sin\, x \\ e ^{i x} &= r \left(\cos\, \theta + \mathrm{i}\sin\, \theta\right) \\ \left(\cos\, x + \mathrm{i}\sin\, x\right)^n &= \cos(n x) + \mathrm{i}\sin(n x) \\ \end{split}\end{equation*}
r=z=x+iy=x2+y2r2=x2+y2tanθ=yxθ=arctan(yx)\begin{equation*}\begin{split} r &= |z| = |x + \mathrm{i}y| = \sqrt{x^2 + y^2} \\ r^2 &= x^2 + y^2 \\ \tan \theta &= \frac{y}{x}\\ \theta &= \arctan\left(\frac{y}{x}\right) \end{split}\end{equation*}

Polar Coordinate System

Given

tanθ=yxr2=x2+y2\begin{equation*}\begin{split} \tan \theta &= \frac{y}{x}\\ r^2 &= x^2 + y^2 \\ \end{split}\end{equation*}

Then

x=rcosθy=rsinθ\begin{equation*}\begin{split} x &= r \cdot \cos\,\theta \\ y &= r \cdot \sin\,\theta \\ \end{split}\end{equation*}

Properties

Given

z1=r1  cis  θ1z2=r1  cis  θ1\begin{equation*}\begin{split} z_1 &= r_1\;\mathrm{cis}\;\theta_1 \\ z_2 &= r_1\;\mathrm{cis}\;\theta_1 \end{split}\end{equation*}

Then

z1z2=r1r2  cis  (θ1+θ2)z1z2=r1r2  cis  (θ1θ2)\begin{equation*}\begin{split} z_1 \cdot z_2 &= r_1 \cdot r_2 \;\mathrm{cis}\;\left(\theta_1 + \theta_2\right) \\ \frac{z_1}{z_2}&= \frac{r_1}{r_2}\;\mathrm{cis}\;\left(\theta_1 - \theta_2\right) \\ \end{split}\end{equation*}

De Moivre’s Theorem

zn=rn  cis    nθ\begin{equation*}\begin{split} z^n &= r^n \;\mathrm{cis}\;\;n\theta \end{split}\end{equation*}

De Moivre’s Theorem For Finding Roots

wk=r1n  cis  θ+τkn  k=0,1,2,n1n1\begin{equation*}\begin{split} \underbrace{w_k = r^{\frac{1}{n}}\;\mathrm{cis}\;\frac{\theta + \tau\cdot{k}}{n}} _{\begin{split}\forall\; k &= 0,1,2\cdots,n-1\\ n &\geq 1\end{split}} \end{split}\end{equation*}

Trigonometric form of a complex number

z=x+iy=r(cosθ+isinθ)=r  cis  θ\begin{equation*}\begin{split} z &= x + \mathrm{i}y \\ &= r \left(\cos\, \theta + \mathrm{i}\sin\, \theta\right)\\ & = r\;\mathrm{cis}\;\theta \\ \end{split}\end{equation*}

Vectors

Quick Facts

Vector Operations

Dot Product

ab=[a1a2a3][b1b2b3]=a1b1+a2b2+a3b3ab=[a1a2][b1b2]=a1b1+a2b2\begin{equation*}\begin{split} \vec{a}\cdot\vec{b} &= \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = a_1b_1 + a_2b_2 + a_3b_3\\\\ \vec{a}\cdot\vec{b} &= \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = a_1b_1 + a_2b_2 \end{split}\end{equation*}

Cross Product

a×b=[a1a2a3]×[b1b2b3]=det(i^j^k^a1a2a3b1b2b3)=i^efhij^dfgi+k^degh=i^(eifh)j^(difg)+k^(dheg)=[eifhdifgdheg]=c\begin{equation*}\begin{split} \vec{a}\times\vec{b} &= \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}\times\begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}\\ &= \mathrm{det} \begin{pmatrix} \mathrm{\hat{i}} & \mathrm{\hat{j}} & \mathrm{\hat{k}}\\ a_1 & a_2 & a_3\\ b_1 & b_2 & b_3 \end{pmatrix}\\ &= \mathrm{\hat{i}} \begin{vmatrix} e & f\\ h & i \end{vmatrix} - \mathrm{\hat{j}} \begin{vmatrix} d & f\\ g & i \end{vmatrix} + \mathrm{\hat{k}} \begin{vmatrix} d & e\\ g & h \end{vmatrix}\\ &= \mathrm{\hat{i}}\left(e i - f h\right) - \mathrm{\hat{j}}\left(d i - f g\right) + \mathrm{\hat{k}}\left(d h - e g\right)\\ &= \begin{bmatrix} e i - f h & d i - f g & d h - e g \end{bmatrix}\\ &= \vec{c} \end{split}\end{equation*}

Length of a Vector

a=(a1)2+(a2)2a=(a1)2+(a2)2+(a3)2\begin{equation*}\begin{split} |a| &= \sqrt{(a_1)^2 + (a_2)^2} \\ |a| &= \sqrt{(a_1)^2 + (a_2)^2 + (a_3)^2} \end{split}\end{equation*}

Definition of Vector Addition

If u\vec{u} and v\vec{v} are positioned so the initial point of v\vec{v} is at the terminal point of u\vec{u}, then the sum u+v\vec{u} + \vec{v} is the vector from the initial point of u\vec{u} to the terminal point of v\vec{v}.


Given some vectors u\vec{u} and v\vec{v}, the vector uv\vec{u} - \vec{v} is the vector that points from the head of v\vec{v} to the head of u\vec{u}

Standard Basis Vectors

i^=[100]j^=[010]k^=[001]\begin{equation*}\begin{split} \mathrm{\hat{i}} &= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}\\ \mathrm{\hat{j}} &= \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}\\ \mathrm{\hat{k}} &= \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \end{split}\end{equation*}

Orthogonal

Two vectors are orthogonal if and only if

ab=0\begin{equation*}\begin{split} \vec{a}\cdot\vec{b} = 0 \end{split}\end{equation*}

The Unit Vector

u^=aa\begin{equation*}\begin{split} \hat{u} &= \frac{\vec{a}}{|\vec{a}|}\end{split}\end{equation*}

If θ\theta is the angle between the vectors a\vec{a} and b\vec{b}, then

aa=aacosθ\begin{equation*}\begin{split} \vec{a} \cdot \vec{a} = |\vec{a}| \cdot |\vec{a}| \cos\theta \end{split}\end{equation*}

If θ\theta is the angle between the nonzero vectors a\vec{a} and b\vec{b}, then

cosθ=abab\begin{equation*}\begin{split} \cos\theta = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}| |\vec{b}|}\end{split}\end{equation*}

Two nonzero vectors a\vec{a} and b\vec{b} are parallel if and only if

a×b=0\begin{equation*}\begin{split} \vec{a}\times\vec{b} = 0 \end{split}\end{equation*}

Properties of the Dot Product

aa=a2\begin{equation*}\begin{split} \vec{a} \cdot \vec{a} = |\vec{a}|^2 \end{split}\end{equation*}
a(b+c)=ab+ac\begin{equation*}\begin{split} \vec{a} \cdot \left(\vec{b} + \vec{c}\right) = \vec{a}\vec{b} + \vec{a}\vec{c} \end{split}\end{equation*}
ab=ba\begin{equation*}\begin{split} \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \end{split}\end{equation*}
(ca)b=c(ab)\begin{equation*}\begin{split} \left(c \cdot \vec{a}\right) \cdot \vec{b} = c\left(\vec{a} \cdot \vec{b}\right) \end{split}\end{equation*}

Direction Cosines & Direction Angles of a Vector

Where

v=[vxvyvz]v=(vx)2+(vy)2+(vz)2\begin{equation*}\begin{split} \vec{v} = \begin{bmatrix} v_x & v_y & v_z \end{bmatrix} ||\vec{v}|| = \sqrt{(v_x)^2 + (v_y)^2 + (v_z)^2} \end{split}\end{equation*}

Direction Cosines

cosα=vxvcosβ=vyvcosγ=vzv\begin{equation*}\begin{split} \cos\alpha &= \frac{v_x}{||\vec{v}||}\\ \cos\beta &= \frac{v_y}{||\vec{v}||}\\ \cos\gamma &= \frac{v_z}{||\vec{v}||}\end{split}\end{equation*}

Direction Angles

α=arccos(vxv)β=arccos(vyv)γ=arccos(vzv)\begin{equation*}\begin{split} \alpha &= \arccos \left(\frac{v_x}{||\vec{v}||}\right)\\ \beta &= \arccos \left(\frac{v_y}{||\vec{v}||}\right)\\ \gamma &= \arccos \left(\frac{v_z}{||\vec{v}||}\right) \end{split}\end{equation*}

Theorem

cos2α+cos2β+cos2γ=1\begin{equation*}\begin{split} \cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1 \end{split}\end{equation*}

Proof
v=i^cosα+k^cosβ+k^cosγv=i^cosα+k^cosβ+k^cosγ=1\begin{equation*}\begin{split} \vec{v} &= \hat{i}\cos\alpha + \hat{k}\cos\beta + \hat{k}\cos\gamma\\ ||\vec{v}|| &= || \hat{i}\cos\alpha + \hat{k}\cos\beta + \hat{k}\cos\gamma|| = 1 \end{split}\end{equation*}

Given

cos2α+cos2β+cos2γ=1cos2α+cos2β+cos2γ2=12cos2α+cos2β+cos2γ=1\begin{equation*}\begin{split} \sqrt{\cos^2\alpha + \cos^2\beta + \cos^2\gamma} &= 1\\ \sqrt{\cos^2\alpha + \cos^2\beta + \cos^2\gamma}^2 &= 1^2\\ \cos^2\alpha + \cos^2\beta + \cos^2\gamma &= 1 \end{split}\end{equation*}

Therefore

cos2α+cos2β+cos2γ=1\begin{equation*}\begin{split} \cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1\\ \end{split}\end{equation*}

Vector Relations

Parallel Vectors

  • When two vectors are parallel; they never intersect (duh).

Given some vectors

a=[axayaz]b=[bxbybz]\begin{equation*}\begin{split} \vec{a} &= \begin{bmatrix} a_x & a_y & a_z \end{bmatrix}\\ \vec{b} &= \begin{bmatrix} b_x & b_y & b_z \end{bmatrix} \end{split}\end{equation*}

The vectors a\vec{a} and b\vec{b} are parallel if and only if they are scalar multiples of one another.

a=k  b        k0\begin{equation*}\begin{split} \vec{a} &= k\;\vec{b} \;\;\;\;\forall k \neq 0 \end{split}\end{equation*}
Alternatively
axbx=ayby=azbz\begin{equation*}\begin{split} \frac{a_x}{b_x}= \frac{a_y}{b_y}= \frac{a_z}{b_z}\end{split}\end{equation*}

Orthogonal Vectors

  • When two vectors are orthogonal; they meet at right angles.

Given some vectors

a=[axayaz]b=[bxbybz]\begin{equation*}\begin{split} \vec{a} &= \begin{bmatrix} a_x & a_y & a_z \end{bmatrix}\\ \vec{b} &= \begin{bmatrix} b_x & b_y & b_z \end{bmatrix} \end{split}\end{equation*}

Two vectors are orthogonal if and only if

a×b=0\begin{equation*}\begin{split} \vec{a}\times\vec{b} = 0 \end{split}\end{equation*}

Reparameterization of the position vector v(t)\vec{v}(t) in terms of length S(t)S(t)

The Arc Length Function

Given

v=[xyz]=[f(t)g(t)h(t)]\begin{equation*}\begin{split} \vec{v} &= \begin{bmatrix} x & y & z \end{bmatrix} = \begin{bmatrix} f(t) & g(t) & h(t) \end{bmatrix} \end{split}\end{equation*}

We can redefine v\vec{v} in terms of arc length between two endpoints

S(t)=at(f(u))2(g(u))2(h(u))2=at(dxdu)2(dydu)2(dzdu)2=at(v(u)) \newcommand{\Long}{ \int_a^t \sqrt{ \left(f^\prime(u)\right)^2 \left(g^\prime(u)\right)^2 \left(h^\prime(u)\right)^2 } } \newcommand{\AltLong}{ \int_a^t \sqrt{ \left(\frac{\mathrm{d}x}{\mathrm{d}u}\right)^2 \left(\frac{\mathrm{d}y}{\mathrm{d}u}\right)^2 \left(\frac{\mathrm{d}z}{\mathrm{d}u}\right)^2 } } \newcommand{\short}{ \int_a^t ||\left(v^\prime(u)\right)|| } \begin{equation} \begin{split} S(t) &= \Long\\ &= \AltLong\\ &= \short \end{split} \end{equation}

That is, S(t)S(t) is the length of the curve (CC) between r(a)r(a) and r(b)r(b).


Furthermore from the adjacent definition; we can simply the above to

S(t)=atdSdt\begin{equation*}\begin{split} S(t) = \int_a^t \frac{\mathrm{d}S}{\mathrm{d}t}\end{split}\end{equation*}

The Arc Length Function

dSdtv(t)\begin{equation*}\begin{split} \frac{\mathrm{d}S}{\mathrm{d}t}\equiv || v^\prime(t) || \end{split}\end{equation*}

That is

dSdt=(f(u))2(g(u))2(h(u))2=(dxdu)2(dydu)2(dzdu)2=(v(u)) \newcommand{\Long}{ \sqrt{ \left(f^\prime(u)\right)^2 \left(g^\prime(u)\right)^2 \left(h^\prime(u)\right)^2 } } \newcommand{\AltLong}{ \sqrt{ \left(\frac{\mathrm{d}x}{\mathrm{d}u}\right)^2 \left(\frac{\mathrm{d}y}{\mathrm{d}u}\right)^2 \left(\frac{\mathrm{d}z}{\mathrm{d}u}\right)^2 } } \newcommand{\short}{ ||\left(v^\prime(u)\right)|| } \begin{equation} \begin{split} \frac{\mathrm{d}S}{\mathrm{d}t}&= \Long\\ &= \AltLong\\ &= \short \end{split} \end{equation}

Vectors Derived From Some Curve Defined by v\vec{v}

The Unit Vector

U^vv\begin{equation*}\begin{split} \hat{U} \equiv \frac{\vec{v}}{||\vec{v}||}\end{split}\end{equation*}

The Unit Tangent Vector

Tv(t)v(t)dvdS\begin{equation*}\begin{split} \vec{T} \equiv \frac{v^\prime(t)}{||v^\prime(t)||}\equiv \frac{\mathrm{d}v}{\mathrm{d}S}\end{split}\end{equation*}

The Unit Normal Vector

NTT\begin{equation*}\begin{split} \vec{N} \equiv \frac{T^\prime}{||T^\prime||}\end{split}\end{equation*}

The Binormal Vector

BT×N\begin{equation*}\begin{split} \vec{B} \equiv \vec{T}\times\vec{N} \end{split}\end{equation*}
  • Therefore, the binormal vector is orthogonal to both the tangent vector and the normal vector.
  • The plane determined by the normal and binormal vectors N and B at a point P on a curve C is called the normal plane of C at P.
  • The plane determined by the vectors T and N is called the osculating plane of C at P. The name comes from the Latin osculum, meaning “kiss.” It is the plane that comes closest to containing the part of the curve near P. (For a plane curve, the osculating plane is simply the plane that contains the curve.)

Kappa - Curvature of a Vector

κdTdSTrr×rr3\begin{equation*}\begin{split} \kappa \equiv \left|\frac{\mathrm{d}T}{\mathrm{d}S}\right| \equiv \frac{\left| T^\prime \right|}{\left| r^\prime \right|}\equiv \frac{\left| r^\prime \times r^{\prime\prime} \right|}{\left| r^\prime \right|^3}\end{split}\end{equation*}

Tangential & Normal Components of the Acceleration Vector of the Curve

When we study the motion of a particle, it is often useful to resolve the acceleration into two components, one in the direction of the tangent and the other in the direction of the normal.

aT=ddtv=rrraN=κv2=r×rra=aTT+aNN\begin{equation*}\begin{split} a_{\vec{T}} &= \frac{\mathrm{d}}{\mathrm{d}t}\left|\vec{v}\right| = \frac{r^\prime \cdot r^{\prime\prime}}{|r^\prime|}\\ a_{\vec{N}} &= \kappa \left|\vec{v}\right|^2 = \frac{\left|r^\prime \times r^{\prime\prime}\right|}{|r^\prime|}\\ \vec{a} &= a_{\vec{T}} \vec{T} + a_{\vec{N}} \vec{N} \end{split}\end{equation*}

Specifically

aTaN}Tangential & Normal Components of a\begin{equation*}\begin{split} \begin{rcases} a_{\vec{T}}\\ a_{\vec{N}} \end{rcases}\text{Tangential \& Normal Components of $\vec{a}$} \end{split}\end{equation*}

Vector Calculus

The Position Vector r(t)\vec{r}(t)

(Original Function)

The Velocity Vector v(t)\vec{v}(t)

(First Derivative)

  • The velocity vector is also the tangent vector and points in the direction of the tangent line.
  • The speed of the particle at time t is the magnitude of the velocity vector, that is,
    v(t)=(r)(t)=dsdtrate of change of distance with respect to time\begin{equation*}\begin{split} \underbrace{|\vec{v}(t)| = |(\vec{r})^\prime(t)| = \frac{\mathrm{d}s}{\mathrm{d}t}} _{\text{rate of change of distance with respect to time}} \end{split}\end{equation*}

The Acceleration Vector a(t)\vec{a}(t)

(Second Derivative)

Matrices

Reference

The Determinant of A Matrix

A=abcd=adbcA=abcdefghi=aefhibdfgi+cdegh\begin{equation*}\begin{split} |A| &= \begin{vmatrix} a & b\\ c & d \end{vmatrix} = ad - bc\\\\ |A| &= \begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}\\ &= a \begin{vmatrix} e & f\\ h & i \end{vmatrix} - b \begin{vmatrix} d & f\\ g & i \end{vmatrix} + c \begin{vmatrix} d & e\\ g & h \end{vmatrix} \end{split}\end{equation*}

Only works for square matrices.

The Cross Product

a×b=[a1a2a3]×[b1b2b3]=det(i^j^k^a1a2a3b1b2b3)=i^efhij^dfgi+k^degh=i^(eifh)j^(difg)+k^(dheg)=[eifhdifgdheg]=c\begin{equation*}\begin{split} \vec{a}\times\vec{b} &= \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}\times\begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}\\ &= \mathrm{det} \begin{pmatrix} \mathrm{\hat{i}} & \mathrm{\hat{j}} & \mathrm{\hat{k}}\\ a_1 & a_2 & a_3\\ b_1 & b_2 & b_3 \end{pmatrix}\\ &= \mathrm{\hat{i}} \begin{vmatrix} e & f\\ h & i \end{vmatrix} - \mathrm{\hat{j}} \begin{vmatrix} d & f\\ g & i \end{vmatrix} + \mathrm{\hat{k}} \begin{vmatrix} d & e\\ g & h \end{vmatrix}\\ &= \mathrm{\hat{i}}\left(e i - f h\right) - \mathrm{\hat{j}}\left(d i - f g\right) + \mathrm{\hat{k}}\left(d h - e g\right)\\ &= \begin{bmatrix} e i - f h & d i - f g & d h - e g \end{bmatrix}\\ &= \vec{c} \end{split}\end{equation*}

Geometry

The Circle

Area  =πr2Circumference  =2πr\begin{equation*}\begin{split} \small\text{Area}\;\normalsize &= \pi r^2\\ \small\text{Circumference}\;\normalsize &= 2 \pi r \end{split}\end{equation*}

Definition of a Line

Vector Equation of a Line

Given

P1=[x1y1z1]P2=[x2y2z2]\begin{equation*}\begin{split} P_1&= \begin{bmatrix} x_1& y_1& z_1\end{bmatrix}\\ P_2&= \begin{bmatrix} x_2& y_2& z_2\end{bmatrix}\\ \end{split}\end{equation*}
P1=[x1y1z1]P2=[x2y2z2]\begin{equation*}\begin{split} P_1&= \begin{bmatrix} x_1& y_1& z_1\end{bmatrix}\\ P_2&= \begin{bmatrix} x_2& y_2& z_2\end{bmatrix}\\ \end{split}\end{equation*}

We can define a vector between P1P_1 and P2P_2

Δv=[x2y2z2][x1y1z1]=[x2x1y2y1z2z1]=[ΔxΔyΔz]\begin{equation*}\begin{split} \overrightarrow{\Delta\mathsf{v}}&= \begin{bmatrix} x_2\\ y_2\\ z_2\end{bmatrix} - \begin{bmatrix} x_1\\ y_1\\ z_1\end{bmatrix} = \begin{bmatrix} x_2-x_1\\ y_2-y_1\\ z_2-z_1\end{bmatrix} = \begin{bmatrix} \Delta_x\\ \Delta_y\\ \Delta_z\end{bmatrix} \end{split}\end{equation*}
Therefore

The equation of a line in 3D space or R3\mathbb{R}^3 can be defined VIA the following options

L=P1+tΔv[xyz]=[x1y1z1]+t[ΔxΔyΔz]=[x1y1z1]+[t  Δxt  Δyt  Δz]=[x1+t  Δxy1+t  Δyz1+t  Δz]=[x1+t(x2x1)x2+t(x2x1)x3+t(x2x1)]\begin{equation*}\begin{split} L &= P_1+ t\cdot\overrightarrow{\Delta\mathsf{v}}\\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} &= \begin{bmatrix} x_1\\ y_1\\ z_1\end{bmatrix} + t\begin{bmatrix} \Delta_x\\ \Delta_y\\ \Delta_z\end{bmatrix} = \begin{bmatrix} x_1\\ y_1\\ z_1\end{bmatrix} + \begin{bmatrix} t\;\Delta_x\\ t\;\Delta_y\\ t\;\Delta_z\end{bmatrix} \\ &= \begin{bmatrix} x_1+ t\;\Delta_x\\ y_1+ t\;\Delta_y\\ z_1+ t\;\Delta_z\end{bmatrix}\\ &= \begin{bmatrix} x_1+ t(x_2-x_1) \\ x_2+ t(x_2-x_1) \\ x_3 + t(x_2-x_1) \end{bmatrix} \end{split}\end{equation*}

That is

L=P1+tΔv[xyz]=[x1+t  Δxy1+t  Δyz1+t  Δz]=[x1+t(x2x1)y1+t(y2y1)z1+t(z2z1)]\begin{equation*}\begin{split} L &= P_1+ t\cdot\overrightarrow{\Delta\mathsf{v}}\\ \begin{bmatrix} x \\ y \\ z \end{bmatrix} &= \begin{bmatrix} x_1+ t\;\Delta_x\\ y_1+ t\;\Delta_y\\ z_1+ t\;\Delta_z\end{bmatrix} = \begin{bmatrix} x_1+ t(x_2-x_1) \\ y_1+ t(y_2-y_1) \\ z_1+ t(z_2-z_1) \end{bmatrix} \end{split}\end{equation*}

Parametric Equation of a Line

x=x1+t(x2x1)=x1+t  Δxy=x1+t(y2y1)=y1+t  Δyz=x1+t(z2z1)=z1+t  Δzr  =  r0  +  a  =  r0  +  tv\begin{equation*}\begin{split} \underbrace{ \begin{split} x &= x_1+ t(x_2-x_1) = x_1+ t\;\Delta_x\\ y &= x_1+ t(y_2-y_1) = y_1+ t\;\Delta_y\\ z &= x_1+ t(z_2-z_1) = z_1+ t\;\Delta_z\end{split}}_{ r \;=\; r_0 \;+\; a \;=\; r_0 \;+\; t\,v } \end{split}\end{equation*}

Essentially

L=P1+tΔv    tR\begin{equation*}\begin{split} L &= P_1+ t\cdot\overrightarrow{\Delta\mathsf{v}}\;\;\forall t\in\mathbb{R} \end{split}\end{equation*}

That is, tt is the scaling factor. In a way, it's like it's a function of tt, but also similar to the slope (mm) in y=mx+by = mx + b, except mm(i.e. tt) is parameterized.


Sometimes this will be (confusingly) denoted as

r=r0+a=r0+tv\begin{equation*}\begin{split} \vec{r} &= \vec{r_0} + \vec{a} = \vec{r_0} + t\vec{v}\\ \end{split}\end{equation*}

Symmetric Equation of a Line

t=xx1x2x1=xx1Δxt=yy1y2y1=yy1Δyt=zz1z2z1=zz1Δz\begin{equation*}\begin{split} t &= \frac{x - x_1}{x_2-x_1}= \frac{x - x_1}{\Delta_x}\\ t &= \frac{y - y_1}{y_2-y_1}= \frac{y - y_1}{\Delta_y}\\ t &= \frac{z - z_1}{z_2-z_1}= \frac{z - z_1}{\Delta_z}\end{split}\end{equation*}

Therefore

xx1Δx=yy1Δy=zz1Δzxx1x2x1=yy1y2y1=zz1z2z1\begin{equation*}\begin{split} \frac{x - x_1}{\Delta_x}&= \frac{y - y_1}{\Delta_y}= \frac{z - z_1}{\Delta_z}\\\\ \frac{x - x_1}{x_2-x_1}&= \frac{y - y_1}{y_2-y_1}= \frac{z - z_1}{z_2-z_1}\end{split}\end{equation*}

Rationale

We rewrite r=r0+a=r0+tvr = r_0 + a = r_0 + t v in terms of tt.

That is

x=x1+t(x2x1)=x1+t  Δxt  Δx=xx1=t(x2x1)t=xx1x2x1=xx1Δxy=y1+t(y2y1)=y1+t  Δyt  Δy=yy1=t(y2y1)t=yy1y2y1=yy1Δyz=z1+t(z2z1)=z1+t  Δzt  Δz=zz1=t(z2z1)t=zz1z2z1=zz1Δz\begin{equation*}\begin{split} x &= x_1+ t(x_2-x_1) = x_1+ t\;\Delta_x\\ t\;\Delta_x&= x - x_1= t(x_2-x_1)\\ t &= \frac{x - x_1}{x_2-x_1}= \frac{x - x_1}{\Delta_x}\\\\ y &= y_1+ t(y_2-y_1) = y_1+ t\;\Delta_y\\ t\;\Delta_y&= y - y_1= t(y_2-y_1)\\ t &= \frac{y - y_1}{y_2-y_1}= \frac{y - y_1}{\Delta_y}\\\\ z &= z_1+ t(z_2-z_1) = z_1+ t\;\Delta_z\\ t\;\Delta_z&= z - z_1= t(z_2-z_1) \\ t &= \frac{z - z_1}{z_2-z_1}= \frac{z - z_1}{\Delta_z}\end{split}\end{equation*}

Parameterizations of a curve

Parametrized curve
A curve in the plane is said to be parameterized if the set of coordinates on the curve, (x,y), are represented as functions of a variable t.
A parametrized Curve is a path in the xy-plane traced out by the point (x(t),y(t))\left(x(t), y(t)\right) as the parameter tt ranges over an interval II.
A parametrized Curve is a path in the xyz-plane traced out by the point (x(t),y(t),z(t))\left(x(t), y(t), z(t)\right) as the parameter tt ranges over an interval II.

Curvature Properties

Length of a Curve

L=ab(f(t))2(g(t))2(h(t))2=ab(dxdt)2(dydt)2(dzdt)2=ab(r(t))    some constant \newcommand{\Long}{ \int_a^b \sqrt{ \left(f^\prime(t)\right)^2 \left(g^\prime(t)\right)^2 \left(h^\prime(t)\right)^2 } } \newcommand{\AltLong}{ \int_a^b \sqrt{ \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 \left(\frac{\mathrm{d}z}{\mathrm{d}t}\right)^2 } } \newcommand{\short}{ \int_a^b ||\left(r^\prime(t)\right)|| } \begin{equation} \begin{split} L &= \Long\\ &= \AltLong\\ &= \short\\ &\implies \text{some constant} \end{split} \end{equation}

The Arc Length Function

Suppose

  • Given some curve CC defined by some vector r\vec{r} in R3\mathbb{R}^3
  • where rr^\prime is continuous and CC is traversed exactly once as tt increases from aa to bb

We can define it's arc length function VIA

S(t)=at(f(u))2(g(u))2(h(u))2=at(dxdu)2(dydu)2(dzdu)2=at(r(u)) \newcommand{\Long}{ \int_a^t \sqrt{ \left(f^\prime(u)\right)^2 \left(g^\prime(u)\right)^2 \left(h^\prime(u)\right)^2 } } \newcommand{\AltLong}{ \int_a^t \sqrt{ \left(\frac{\mathrm{d}x}{\mathrm{d}u}\right)^2 \left(\frac{\mathrm{d}y}{\mathrm{d}u}\right)^2 \left(\frac{\mathrm{d}z}{\mathrm{d}u}\right)^2 } } \newcommand{\short}{ \int_a^t ||\left(r^\prime(u)\right)|| } \begin{equation*} \begin{split} S(t) &= \Long\\ &= \AltLong\\ &= \short \end{split} \end{equation*}
*

Calculus

Derivative Tables

δsin(x)=cos(x)δcsc(x)=cot(x)csc(x)\begin{equation*}\begin{split} \delta\sin(x) &= \cos(x) \\ \delta\csc(x) &= -\cot(x) \cdot \csc(x) \end{split}\end{equation*}
δcos(x)=sin(x)δsec(x)=tan(x)sec(x)\begin{equation*}\begin{split} \delta\cos(x) &= -\sin(x) \\ \delta\sec(x) &= \tan(x) \cdot \sec(x) \end{split}\end{equation*}
δtan(x)=sec2(x)δcot(x)=csc2(x)\begin{equation*}\begin{split} \delta\tan(x) &= \sec^2(x) \\ \delta\cot(x) &= -\csc^2(x) \end{split}\end{equation*}
δsin1(x)=11x2\begin{equation*}\begin{split} \delta\sin^{-1}(x) &= \frac{1}{\sqrt{1 - x^2}}\end{split}\end{equation*}
δcos1(x)=11x2\begin{equation*}\begin{split} \delta\cos^{-1}(x) &= -\frac{1}{\sqrt{1 - x^2}}\end{split}\end{equation*}
δtan1(x)=11+x2\begin{equation*}\begin{split} \delta\tan^{-1}(x) &= \frac{1}{1 + x^2}\end{split}\end{equation*}

Integration Tables

sin(x)  dx=cosxcsc2(x)  dx=cotxcsc(x)cot(x)  dx=cscxcsc(x)  dx=lncscxcotxsinh(x)  dx=cosh(x)\begin{equation*}\begin{split} \int\sin(x)\;\mathrm{d}x &= -\cos x \\ \int\csc^2(x)\;\mathrm{d}x &= -\cot x \\ \int\csc(x)\cdot\cot(x)\;\mathrm{d}x &= -\csc x \\ \int\csc(x)\;\mathrm{d}x &= \ln\left|\csc x - \cot x\right| \\ \int\sinh(x)\;\mathrm{d}x &= \cosh(x) \\ \end{split}\end{equation*}
cos(x)  dx=sinxsec2(x)  dx=tanxsec(x)tan(x)  dx=secxsec(x)  dx=lnsecx+tanxcosh(x)  dx=sinh(x)\begin{equation*}\begin{split} \int\cos(x)\;\mathrm{d}x &= \sin x \\ \int\sec^2(x)\;\mathrm{d}x &= \tan x \\ \int\sec(x)\cdot\tan(x)\;\mathrm{d}x &= \sec x \\ \int\sec(x)\;\mathrm{d}x &= \ln\left|\sec x + \tan x\right| \\ \int\cosh(x)\;\mathrm{d}x &= \sinh(x) \\ \end{split}\end{equation*}
tan(x)  dx=lnsecxcot(x)  dx=lnsinx\begin{equation*}\begin{split} \int\tan(x)\;\mathrm{d}x &= \ln| \sec x | \\ \int\cot(x)\;\mathrm{d}x &= \ln| \sin x | \\ \end{split}\end{equation*}
bx  dx=bxln(b)\begin{equation*}\begin{split} \int b^x\;\mathrm{d}x &= \frac{b^x}{\ln(b)}\end{split}\end{equation*}
1x2+a2  dx=1atan1(xa)\begin{equation*}\begin{split} \int\frac{1}{x^2 + a^2}\;\mathrm{d}x &= \frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) \end{split}\end{equation*}
1x2a2  dx=12alnxax+a\begin{equation*}\begin{split} \int\frac{1}{x^2 - a^2}\;\mathrm{d}x &= \frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right| \end{split}\end{equation*}
1a2x2  dx=sin1(xa),  a>0\begin{equation*}\begin{split} \int\frac{1}{\sqrt{a^2 - x^2}}\;\mathrm{d}x &= \sin^{-1}\left(\frac{x}{a}\right),\;a>0 \end{split}\end{equation*}
1x2±a2  dx=lnx+x2±a2\begin{equation*}\begin{split} \int\frac{1}{\sqrt{x^2 \pm a^2}}\;\mathrm{d}x &= \ln\left|x+\sqrt{x^2\pm a^2}\right| \end{split}\end{equation*}

Riemann Sums

Given

A=abf(x)=limni=1nΔxf(x)  where  {Δx=ban\begin{equation*}\begin{split} A &= \int_{a}^{b} f(x) = \lim_{n\to\infty}\sum_{i=1}^{n} \Delta{x} \cdot f(x) \;\text{where}\; \begin{dcases} \Delta{x} = \frac{b - a}{n}\end{dcases}\end{split}\end{equation*}

Left Riemann Sum

A=abf(x)  dxLn=i=0n1Δxf(a+iΔx)\begin{equation*}\begin{split} A &= \int_{a}^{b} f(x) \;\mathrm{d}x \approx L_n = \sum_{i = 0}^{n-1}\, \Delta{x}\cdot f\left(a + i\cdot\Delta{x}\right) \end{split}\end{equation*}

Right Riemann Sum

A=abf(x)  dxRn=i=1nΔxf(a+iΔx)\begin{equation*}\begin{split} A &= \int_{a}^{b} f(x) \;\mathrm{d}x \approx R_n = \sum_{i = 1}^{n}\, \Delta{x}\cdot f\left(a + i\cdot\Delta{x}\right) \end{split}\end{equation*}

Midpoint Riemann Sum

A=abf(x)  dxΔxf(a+“avg. of xi and xi1Δx)i=1nΔxf(a+xi1+xi2Δx)or alternativelyAi=0n1Δxf(a+xi+1+xi2Δx) \newcommand{\generalFormat}{ \sum_{\small{\cdots}}^{\small{\cdots}}\, \Delta{x}\cdot f\left(a + \text{“avg. of $x_i$ and $x_{i-1}$”} \cdot \Delta{x}\right) } \newcommand{\SigmaExampleOne}{ \sum_{i = 1}^{n}\, \Delta{x}\cdot f\left(a + \frac{x_{i - 1} + x_i}{2}\cdot \Delta{x}\right) } \newcommand{\SigmaExampleTwo}{ \sum_{i = 0}^{n-1}\, \Delta{x}\cdot f\left(a + \frac{x_{i + 1} + x_i}{2}\cdot \Delta{x}\right) } \begin{equation} \begin{split} A = \int_{a}^{b} f(x) \;\mathrm{d}x &\approx \generalFormat\\ &\approx \SigmaExampleOne\\ \text{or alternatively}&\\ A &\approx \SigmaExampleTwo \end{split} \end{equation}

We can also do away with the index notation and simplify things.

A=abf(x)  dxi=1nΔxf(a+(i1)+i2Δx)=i=1nΔxf(a+2i12Δx)i=0n1Δxf(a+(i+1)+i2Δx)=i=0n1Δxf(a+2i+12Δx) \newcommand{\SigmaExampleOne}{ \sum_{i = 1}^{n}\, \Delta{x}\cdot f\left(a + \frac{(i - 1) + i}{2}\cdot \Delta{x}\right) = \sum_{i = 1}^{n}\, \Delta{x}\cdot f\left(a + \frac{2i - 1}{2}\cdot \Delta{x}\right) } \newcommand{\SigmaExampleTwo}{ \sum_{i = 0}^{n-1}\, \Delta{x}\cdot f\left(a + \frac{(i + 1) + i}{2}\cdot \Delta{x}\right) = \sum_{i = 0}^{n-1}\, \Delta{x}\cdot f\left(a + \frac{2i + 1}{2}\cdot \Delta{x}\right) } \begin{equation} \begin{split} A = \int_{a}^{b} f(x) \;\mathrm{d}x &\approx \SigmaExampleOne\\ &\approx \SigmaExampleTwo \end{split} \end{equation}

Trapezoidal Riemann Sum

\dots

Simpson's Rule

\begin{equation*}\begin{split} \dots \end{split}\end{equation*}

Improper Integrals

Given  L=af(x)  dx=limtaf(x)  dx=limtF(x)If  L  “exists”  then L is  convergentIf  L  “does not exists”  then L is  divergent\begin{equation*}\begin{split} \text{Given}&\;L = \int_{a}^{\infty} f(x) \;\mathrm{d}x = \lim_{t\to\infty} \int_{a}^{\infty} f(x) \;\mathrm{d}x = \lim_{t\to\infty} F(x)\\ \text{If}&\;L\;\text{“exists”}\;\text{then $L$ is}\;\mathbf{\text{convergent}}\\ \text{If}&\;L\;\text{“does not exists”}\;\text{then $L$ is}\;\mathbf{\text{divergent}} \end{split}\end{equation*}

Infinite Sequences

Infinite Sequence

GivenSn={an}n=1TestsIf  limnSn“exists”  then  Sn is convergentIf  limnSn“does not exists”  then  Sn is Divergent\begin{equation*}\begin{split} \text{Given}&\\ &S_n = \{a_n\}_{n=1}^{\infty}\\ \text{Tests}&\\ &\text{If}\;\lim_{n\to\infty}\,S_n \text{“exists”}\;\text{then}\;\mathbf{\text{$S_n$ is convergent}}\\ &\text{If}\;\lim_{n\to\infty}\,S_n \text{“does not exists”}\;\text{then}\;\mathbf{\text{$S_n$ is Divergent}} \end{split}\end{equation*}

Helpful Theorem

Iflimxan=0Thenlimxan=0\begin{equation*}\begin{split} \text{If}&\\ \lim_{x\to\infty}\,|a_n| &= 0\\ \text{Then}&\\ \lim_{x\to\infty}\,a_n &= 0\\ \end{split}\end{equation*}

Example

Given

Sn={cos(nπ2)}L=limncos(nπ2)=cos(limnnπ2)=cos()=undefined\begin{equation*}\begin{split} S_n &= \{\cos\left(\frac{n\pi}{2}\right)\}\\ L &=\lim_{n\to\infty}\,\cos\left(\frac{n\pi}{2}\right)\\ &= \cos\left(\lim_{n\to\infty}\,\frac{n\pi}{2}\right) \\ &= \cos\left(\infty\right) \\ &= \text{undefined} \end{split}\end{equation*}

Therefore

  Sn is Divergent\begin{equation*}\begin{split} \therefore\;\text{$S_n$ is Divergent} \end{split}\end{equation*}

Example

Given

Sn={sin(πn)}L=limnsin(πn)=sin(limnπn)=sin(0)=0\begin{equation*}\begin{split} S_n &= \{\sin\left(\frac{\pi}{n}\right)\}\\ L &= \lim_{n\to\infty}\,\sin\left(\frac{\pi}{n}\right)\\ &= \sin\left(\lim_{n\to\infty}\,\frac{\pi}{n}\right) \\ &= \sin\left(0\right) \\ &= 0 \end{split}\end{equation*}

Therefore

  Sn is Convergent\begin{equation*}\begin{split} \therefore\;\text{$S_n$ is Convergent} \end{split}\end{equation*}

Infinite Series

Infinite Series

GivenSn=n=1anTestsIf  limnan=0  then  Sn may be convergentIf  limnan0  then  Sn is divergentIf  limnan“does not exists”  then  Sn is divergent\begin{equation*}\begin{split} \text{Given}&\\ &S_n = \sum_{n = 1}^{\infty}\,a_n\\ \text{Tests}&\\ &\text{If}\;\lim_{n\to\infty}\,a_n = 0\;\text{then}\;\text{$S_n$ may be $\mathbf{\text{convergent}}$}\\ &\text{If}\;\lim_{n\to\infty}\,a_n \neq 0\;\text{then}\;\mathbf{\text{$S_n$ is divergent}}\\ &\text{If}\;\lim_{n\to\infty}\,a_n \text{“does not exists”}\;\text{then}\;\mathbf{\text{$S_n$ is divergent}}\\ \end{split}\end{equation*}

Note that the limit of every convergent series is equal to zero. But the inverse isn't always true. If the limit is equal to zero, it may not be convergent.

For example, n=11n\sum_{n=1}^\infty \frac{1}{n} does diverge; but it's limit is equal to zero.

If the limit is equal to zero; the test is inconclusive.

Geometric Series

Given

Sn=n=1an=n=1arn1  where  {a=a1r=S2S1\begin{equation*}\begin{split} S_n = \sum_{n = 1}^{\infty}\,a_n = \sum_{n = 1}^{\infty}\,a\cdot r^{n - 1}\;\text{where}\;\begin{dcases}a &= a_1\\ r &= \frac{S_2}{S_1}\end{dcases}\end{split}\end{equation*}

Alternatively

Sn=n=0an=n=0arn\begin{equation*}\begin{split} S_n = \sum_{n=0}^{\infty}\,a_n = \sum_{n=0}^{\infty}\,a\cdot r^{n} \end{split}\end{equation*}

Tests

If  r1  then  Sn is divergentIf  r<1  then  Sn is convergent\begin{equation*}\begin{split} \text{If}\;|r|\geq{1}\;\text{then}\;\mathbf{\text{$S_n$ is divergent}}\\ \text{If}\;|r|<1\;\text{then}\;\mathbf{\text{$S_n$ is convergent}}\\ \end{split}\end{equation*}

Furthermore

n=1an=n=1arn1=a1r  for all  r<1\begin{equation*}\begin{split} \sum_{n = 1}^{\infty}\,a_n = \sum_{n = 1}^{\infty}\,a\cdot r^{n - 1} = \frac{a}{1 - r}\;\text{for all}\;|r|<1 \end{split}\end{equation*}

The Integral Test

Given        an=f(n)  n on  [1,n)        Sn=n=1an        F(x)=1f(x)  dxWhere        f(x)>0,x[1,)        f(x)<0,x[1,)Tests        If Sn convergent; then F(x) is convergent        If Sn divergent; then F(x) is divergent\begin{equation*}\begin{split} &\text{Given}\\ &\;\;\;\;a_n = f(n)\;\text{$\forall$n on}\;[1,n)\\ &\;\;\;\;S_n = \sum_{n = 1}^{\infty}\,a_n\\ &\;\;\;\;F(x)= \int_{1}^{\infty}f(x)\;\mathrm{d}x\\ &\text{Where}\\ &\;\;\;\;f(x)> 0, \forall\,x\in\,[1, \infty)\\ &\;\;\;\;f^\prime(x)< 0, \forall\,x\in\,[1, \infty)\\ &\text{Tests}\\ &\;\;\;\;\text{If $S_n$ convergent; then $F(x)$ is $\mathbf{convergent}$}\\ &\;\;\;\;\text{If $S_n$ divergent; then $F(x)$ is $\mathbf{divergent}$}\end{split}\end{equation*}
Constraints on [1,n)[1,n)
  • Continuous
  • Positive
  • Decreasing (i.e. use derivative test)

P-Series -or- Harmonic Series

Given        Sn=n=11npTests        If p>1 then Sn is convergent        If 0<p1 then Sn is divergent\begin{equation*}\begin{split} &\text{Given}\\ &\;\;\;\;S_n=\sum_{n=1}^{\infty}\frac{1}{n^p}\\ &\text{Tests}\\ &\;\;\;\;\text{If $p>1$ then $S_n$ is $\mathbf{convergent}$}\\ &\;\;\;\;\text{If $0 < p \leq{1}$ then $S_n$ is $\mathbf{divergent}$} \end{split}\end{equation*}

Note: the Harmonic series is the special case where p=1p=1

Comparison Test

Given        An=n=1an        Bn=n=1bnWhere        an,bn0        anbnTests        If Bn converges     An converges        If An diverges     Bn diverges\begin{equation*}\begin{split} &\text{Given}\\ &\;\;\;\;A_n = \sum_{n=1}^\infty\,a_n\\ &\;\;\;\;B_n = \sum_{n=1}^\infty\,b_n\\ &\text{Where}\\ &\;\;\;\;a_n, b_n \geq 0\\ &\;\;\;\;a_n \leq b_n\\ &\text{Tests}\\ &\;\;\;\;\text{If $B_n$ converges $\implies A_n$ converges}\\ &\;\;\;\;\text{If $A_n$ diverges $\implies B_n$ diverges}\\ \end{split}\end{equation*}

Limit Comparison Test

Given        An=n=1an        Bn=n=1bn        L=limnanbnWhere        L>0,  L±Therefore either both converge or diverge        An converges Bn converges        An diverges Bn diverges\begin{equation*}\begin{split} &\text{Given}\\ &\;\;\;\;A_n = \sum_{n=1}^\infty\,a_n\\ &\;\;\;\;B_n = \sum_{n=1}^\infty\,b_n\\ &\;\;\;\; L = \lim_{n\to\infty}\frac{a_n}{b_n}\\ &\text{Where}\\ &\;\;\;\;L > 0,\;L \neq \pm \infty\\ &\text{Therefore either both converge or diverge}\\ &\;\;\;\;\text{$A_n$ converges $\Longleftrightarrow B_n$ converges}\\ &\;\;\;\;\text{$A_n$ diverges $\Longleftrightarrow B_n$ diverges} \end{split}\end{equation*}
Warning
  • If L>0L > 0, this only means that the limit comparison test can be used. You still need to determine if eitherAnA_n or BbB_b converges or diverges.
  • Therefore, this does not apply to any arbitrary rational function.
Notes
  • For many series, we find a suitable comparison, BnB_n, by keeping only the highest powers in the numerator and denominator of AnA_n.

Estimating Infinite Series

\begin{equation*}\begin{split} \cdots \end{split}\end{equation*}

Differential Equations

Separable Differential Equations

Givendydx=g(x)f(y)=g(x)1f(y)=g(x)h(y)  where  h(x)=1f(y)Therefore (restated)dydx=g(x)h(y)Multiply reciprocalsh(y)  dy=g(x)  dxIntegrateh(y)  dy=g(x)  dxDifferentiateddx(h(y)  dy)=ddx(g(x)  dx)Givenddx=ddxdydy=ddydydxTherefore the LHS is equal toddx(h(y)dy)=ddy(h(y)dy)dydx=h(y)dydxTherefore (in conclusion)  h(y)  dydx=g(x)\begin{equation*}\begin{split} \text{Given}\\ \frac{\mathrm{d}y}{\mathrm{d}x}&= g(x) \cdot f(y)\\ &= \frac{g(x)}{\frac{1}{f(y)}}\\ &= \frac{g(x)}{h(y)}\;\text{where}\;h(x) = \frac{1}{f(y)}\\ \\\text{Therefore (restated)}\\ \frac{\mathrm{d}y}{\mathrm{d}x}&= \frac{g(x)}{h(y)}\\ \\\text{Multiply reciprocals}\\ h(y)\;\mathrm{d}y &= g(x)\;\mathrm{d}x\\ \\\text{Integrate}\\ \int h(y)\;\mathrm{d}y &= \int g(x)\;\mathrm{d}x\\ \\\text{Differentiate}\\ \frac{d}{dx}\left(\int h(y)\;\mathrm{d}y\right) &= \frac{d}{dx}\left(\int g(x)\;\mathrm{d}x\right)\\ \\\text{Given}\\ \frac{\mathrm{d}}{dx}&= \frac{\mathrm{d}}{dx}\cdot \frac{\mathrm{d}y}{\mathrm{d}y}= \textcolor{blue}{\frac{\mathrm{d}}{dy}} \cdot \textcolor{JungleGreen}{\frac{\mathrm{d}y}{dx}}\\ \\\text{Therefore the LHS is equal to}\\ \frac{\mathrm{d}}{dx}\left(\int h(y) \mathrm{d}y\right) &= \textcolor{blue}{\frac{\mathrm{d}}{dy}} \left(\int h(y) \mathrm{d}y\right) \textcolor{JungleGreen}{\frac{\mathrm{d}y}{dx}}\\ &= h(y) \textcolor{JungleGreen}{\frac{\mathrm{d}y}{dx}} \\\text{Therefore (in conclusion)}\\ \therefore \; h(y)\;\frac{\mathrm{d}y}{dx}&= g(x) \end{split}\end{equation*}

Growth and Decay Models

Givendydt=kyProof1y  dy=k  dt1y  dy=k  dtln(y)=kt+Celn(y)=ekt+Cy=ekteCy=ektCThereforey=Cekt\begin{equation*}\begin{split} \text{Given}\\ \frac{\mathrm{d}y}{\mathrm{d}t}&= \textcolor{Periwinkle}{k} y\\ \text{Proof}\\ \frac{1}{y}\;\mathrm{d}y &= \textcolor{Periwinkle}{k}\;\mathrm{d}t \\ \int \frac{1}{y}\;\mathrm{d}y &= \int \textcolor{Periwinkle}{k}\;\mathrm{d}t \\ \ln(y) &= \textcolor{Periwinkle}{k} t + \textcolor{SeaGreen}{C} \\ e^{\ln(y)} &= e^ {\textcolor{Periwinkle}{k} t + \textcolor{SeaGreen}{C}} \\ y &= e^{\textcolor{Periwinkle}{k} t} \cdot e^{\textcolor{SeaGreen}{C}} \\ y &= e^{\textcolor{Periwinkle}{k} t} \cdot \textcolor{SeaGreen}{C} \\ \text{Therefore}\\ y &= \textcolor{SeaGreen}{C} e^{\textcolor{Periwinkle}{k} t} \end{split}\end{equation*}

The above states that all solutions for y=kyy^\prime = k y are of the form y=Cekty = C e^{k t}.

Where

C=Initial value of yk=Proportionality constant\begin{equation*}\begin{split} \textcolor{SeaGreen}{C} &= \textcolor{SeaGreen}{\text{Initial value of $y$}}\\ \textcolor{Periwinkle}{k} &= \textcolor{Periwinkle}{\text{Proportionality constant}}\\ \end{split}\end{equation*}

Exponential growth occurs when k>0\textcolor{Periwinkle}{k > 0}, and exponential decay occurs when k<0\textcolor{Periwinkle}{k < 0}.


The Law of Natural Growth:

dPdt=kP\begin{equation*}\begin{split} \frac{\mathrm{d}\textcolor{DarkOrchid}{P}}{\mathrm{d}t}= \textcolor{Periwinkle}{k} \textcolor{DarkOrchid}P \end{split}\end{equation*}

The Logistic Model of Population Growth:

dPdt=kP(1PL)\begin{equation*}\begin{split} \frac{\mathrm{d}\textcolor{DarkOrchid}P}{\mathrm{d}t}= \textcolor{Periwinkle}{k} \textcolor{DarkOrchid}P \left(1 - \frac{\textcolor{DarkOrchid}{P}}{\textcolor{Aquamarine}{L}}\right) \end{split}\end{equation*}

Where

k=Constant of proportionalityP=Population at time tL=Max size of population\begin{equation*}\begin{split} \textcolor{Periwinkle}{k} &= \textcolor{Periwinkle}{\text{Constant of proportionality}}\\ \textcolor{DarkOrchid}{P} &= \textcolor{DarkOrchid}{\text{Population at time $t$}}\\ \textcolor{Aquamarine}{L} &= \textcolor{Aquamarine}{\text{Max size of population}}\\ \end{split}\end{equation*}

Solving the Logistic Equation

dPdt=kP(1PL)dP=kP(1PL)dt1P(1PL)dP=kdt\begin{equation*}\begin{split} \frac{\mathrm{d}P}{\mathrm{d}t}&= kP \left({1 - \frac{P}{L}}\right)\\ \mathrm{d}P &= kP \left({1 - \frac{P}{L}}\right)\mathrm{d}t \\ \frac{1}{P \left({1 - \frac{P}{L}}\right)}\mathrm{d}P &= k \mathrm{d}t \end{split}\end{equation*}

Via partial fraction decomposition

1P(1PL)=AP+B(1PL)0P+1=A(1PL)+BP0P+1=APAL+BP0P+1=P(BAL)+AWhereBAL=0A=1}  A=1B=1LTherefore1P(1PL)=1P+1L(1PL)\begin{equation*}\begin{split} \frac{1}{P \left({1 - \frac{P}{L}}\right)}&= \frac{A}{P}+ \frac{B}{\left({1 - \frac{P}{L}}\right)}\\ 0P + 1 &= A\left({1 - \frac{P}{L}}\right)+ BP\\ 0P + 1 &= A - \frac{P A}{L}+ BP\\ 0P + 1 &= P\left({B - \frac{A}{L}}\right)+ A \\ \text{Where}\\ \begin{rcases} B - \frac{A}{L}&= 0\\ A &= 1 \end{rcases}\;\begin{array}{ll} A &= 1\\ B &= \frac{1}{L}\end{array}\\ \text{Therefore}\\ \frac{1}{P \left({1 - \frac{P}{L}}\right)}&= \frac{1}{P}+ \frac{\frac{1}{L}}{\left({1 - \frac{P}{L}}\right)}\end{split}\end{equation*}

Rewriting the differential equation

1P(1PL)dP=1P+1L(1PL)dP=kdt1P+1L(1PL)=kdtln  P1Lln(1PL)=kt+Cln(PL(1PL))\begin{equation*}\begin{split} \frac{1}{P \left({1 - \frac{P}{L}}\right)}\mathrm{d}P &= \frac{1}{P}+ \frac{\frac{1}{L}}{\left({1 - \frac{P}{L}}\right)}\mathrm{d}P\\ &= k \mathrm{d}t \\ \int \frac{1}{P}+ \frac{\frac{1}{L}}{\left({1 - \frac{P}{L}}\right)}&= \int k \mathrm{d}t \\ \ln\; P - \frac{1}{L}\ln\left({1 - \frac{P}{L}}\right)&= k t + C\\ \ln\left({\frac{P}{L \cdot \left({1 - \frac{P}{L}}\right)}}\right)\end{split}\end{equation*}

Second Order Homogeneous Linear Differential Equations with Constant Coefficients

Properties

  • If f(x)f(x) and g(x)g(x) are solutions; then f+gf + g is also a solution. Therefore, the most general solution to some second order homogeneous linear differential equations with constant coefficients would be y=C1f(x)+C2g(x)y = C_1 f(x) + C_2 g(x).

    This is why, when you find two solutions to the characteristic equation r1r_1 and r2r_2 respectively, we write it like so.

r1=r2r_1 = r_2

Given some:

ay+by+cy=0  where a0\begin{equation*}\begin{split} a y^{\prime\prime} + b y^\prime + c y = 0\;\text{where $a \neq 0$}\\ \end{split}\end{equation*}

We can presume that yy is of the form erte^{r t}, and therefore:

ify=erttheny=rerty=r2ert\begin{equation*}\begin{split} \text{if}\\ y &= e^{r t}\\ \text{then}\\ y^{\prime} &= r e^{r t}\\ y^{\prime\prime} &= r^2 e^{r t} \end{split}\end{equation*}

Substituting this back into the original equation, we have:

0=ar2ert+brert+cert=ert(ar2+br+c)\begin{equation*}\begin{split} 0 &= a r^2 e^{r t} + b r e^{r t} + c e^{r t}\\ &= e^{r t} \left(a r^2 + b r + c\right) \end{split}\end{equation*}

Where:

=ertnever 0(ar2+br+c)?\begin{equation*}\begin{split} &= \underbrace{e^{r t}}_\text{never $0$} \underbrace{\left(a r^2 + b r + c\right)}_\text{?} \end{split}\end{equation*}

So therefore:

ar2+br+c=0characteristic equationr=b±b24ac    r1,r2\begin{equation*}\begin{split} &\underbrace{a r^2 + b r + c = 0} _\text{characteristic equation}\\ &r = \frac{-b \pm \sqrt{b^2 - 4ac}} \implies r_1, r_2 \end{split}\end{equation*}

Where the general solution is of the form:

y=  C1  er1t+  C2  er2ty=  C1  r1  er1t+  C2  r2  er2ty=  C1  (r1)2  er1t+  C2  (r2)2  er2t}r1  r2 where r1r2\begin{equation*}\begin{split} \begin{rcases} y &=\; &C_1\; e^{r_1 t} &+\; C_2\; e^{r_2 t}\\ y^\prime &=\; &C_1\; r_1\; e^{r_1 t} &+\; C_2\; r_2\; e^{r_2 t}\\ y^{\prime\prime} &=\; &C_1\; \left(r_1\right)^2\; e^{r_1 t} &+\; C_2\; \left(r_2\right)^2\; e^{r_2 t} \end{rcases}\text{$\forall r_1 \; r_2$ where $r_1 \neq r_2$} \end{split}\end{equation*}

Parametric Equations

First Derivative Formula

To find the derivative of a given function defined parametrically by the equations x=u(t)x = u(t) and y=v(t)y = v(t).

Givenx=u(t)y=v(t)Thereforedydx=dydt=v(t)u(t)\begin{equation*}\begin{split} \text{Given}\\ x &= u(t)\\ y &= v(t)\\ \text{Therefore}\\ \frac{\mathrm{d}y}{\mathrm{d}x}&= \frac{\frac{\mathrm{d}y}{\mathrm{d}t}} = \frac{v^\prime(t)}{u^\prime(t)}\end{split}\end{equation*}

Second Derivative Formula

To find the second derivative of a given function defined parametrically by the equations x=u(t)x = u(t) and y=v(t)y = v(t).

Given

x=u(t)y=v(t)\begin{equation*}\begin{split} x &= u(t)\\ y &= v(t)\\ \end{split}\end{equation*}

Therefore

d2ydx2=ddx(dydx)=ddt(dydx)dxdt=ddt(v(t)u(t))u(t)=ddt(v(t)u(t))ddtu(t)=ddtddt(v(t)u(t))u(t)notice the common ddt\begin{equation*}\begin{split} \frac{\mathrm{d}{^2} y}{\mathrm{d}x^2}&= \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)\\ &= \frac{\frac{d}{\mathrm{d}t}\left( \frac{\mathrm{d}y}{\mathrm{d}x}\right)}{\frac{\mathrm{d}x}{\mathrm{d}t}}\\ &= \frac{\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{v^\prime(t)}{u^\prime(t)}\right)}{u^\prime(t)}\\ &= \underbrace{ \frac{\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{v^\prime(t)}{u^\prime(t)}\right)}{\frac{\mathrm{d}}{\mathrm{d}t}u(t)}= \frac{\frac{\mathrm{d}}{\mathrm{d}t}}{\frac{\mathrm{d}}{\mathrm{d}t}}\frac{\left(\frac{v^\prime(t)}{u^\prime(t)}\right)}{u(t)}}_{ \text{notice the common $\frac{\mathrm{d}}{\mathrm{d}t}$} } \end{split}\end{equation*}

The above shows different ways of representing d2ydx2\frac{\mathrm{d}^{2}y}{\mathrm{d}x^2}. (I.e. it doesn't correspond to some final solution.)

Arc Length

Formula for the arc length of a parametric curve over the interval [a,b][a, b].

ab(dxdt)2+(dydt)2dt\begin{equation*}\begin{split} \int_a^b \sqrt{ \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 } \mathrm{d}t \end{split}\end{equation*}

Physics

Kinematic Equations in 1D

Conventions

vˉ=Average velocityaˉ=Average accelerationTime=Δt=t2t1Displacement=Δx=x2x1Δv=v2v1\begin{equation*}\begin{split} \bar{v} &= \text{Average velocity}\\ \bar{a} &= \text{Average acceleration}\\ \text{Time} = \Delta{t} &= t_2 - t_1\\ \text{Displacement} = \Delta{x} &= x_2 - x_1\\ \Delta{v} &= v_2 - v_1 \end{split}\end{equation*}
Graphical Representation

Standard Equations

v2=v1+aΔt\begin{equation*}\begin{split} v_2 &= v_1 + a\Delta{t} \end{split}\end{equation*}
(v2)2=(v1)2+2aΔx\begin{equation*}\begin{split} (v_2)^2 &= (v_1)^2 + 2a\Delta{x} \end{split}\end{equation*}
Δx=v1Δt+12aΔt2=v2Δt12aΔt2=(v2+v12)Δt\begin{equation*}\begin{split} \Delta{x} &= v_1 \Delta{t} + \frac{1}{2}a\Delta{t^2}\\ &= v_2\Delta{t} - \frac{1}{2}a\Delta{t^2}\\ &= \left(\frac{v_2 + v_1}{2}\right)\Delta{t} \end{split}\end{equation*}

Summary

FormulaMissingQuantities Present
v2=v1+aΔtv_2 = v_1 + a\Delta{t}Δx\Delta{x}v1v_1v2v_2aaΔt\Delta{t}
Δx=(v2+v12)Δt\Delta{x} = \left(\frac{v_2 + v_1}{2}\right)\Delta{t}aaΔx\Delta{x}v1v_1Δt\Delta{t}v2v_2
Δx=v1Δt+12aΔt2\Delta{x} = v_1 \Delta{t} + \frac{1}{2}a\Delta{t^2}v2v_2Δx\Delta{x}v1v_1Δt\Delta{t}aa
Δx=v2Δt12aΔt2\Delta{x} = v_2\Delta{t} - \frac{1}{2}a\Delta{t^2}v1v_1Δx\Delta{x}v2v_2Δt\Delta{t}aa
(v2)2=(v1)2+2aΔx(v_2)^2 = (v_1)^2 + 2a\Delta{x}Δt\Delta{t}Δx\Delta{x}v1v_1v2v_2aa

Basics

Constant Velocity
vˉ=ΔxΔtΔx=vˉΔt\begin{equation*}\begin{split} \bar{v} &= \frac{\Delta{x}}{\Delta{t}}\\ \Delta{x} &= \bar{v}\Delta{t} \end{split}\end{equation*}
Uniform acceleration
aˉ=ΔvΔtv2=v1+aΔtΔx=v0Δt+12aΔt2(v2)2=(v1)22aˉΔx\begin{equation*}\begin{split} \bar{a} &= \frac{\Delta{v}}{\Delta{t}}\\ v_2 &= v_1 + a\Delta{t}\\ \Delta{x} &= v_0\Delta{t}+\frac{1}{2}a\Delta{t^2}\\ (v_2)^2 &= (v_1)^2 - 2\bar{a}\Delta{x} \end{split}\end{equation*}

Miscellaneous

vˉ=ΔxΔt=v2+v12aˉ=ΔvΔt\begin{equation*}\begin{split} \bar{v} &= \frac{\Delta{x}}{\Delta{t}}= \frac{v_2 + v_1}{2}\\ \bar{a} &= \frac{\Delta{v}}{\Delta{t}}\end{split}\end{equation*}

Deriving Displacement Formulas

Displacement when object moves with constant velocity

Deriving Δx=vˉΔt\Delta{x} = \bar{v}\Delta{t}
Δx=vˉΔt\begin{equation*}\begin{split} \Delta{x} &= \bar{v}\Delta{t} \end{split}\end{equation*}

Displacement when object accelerates from rest

Deriving Δx=12aˉΔt2\Delta{x} = \frac{1}{2}\bar{a}\Delta{t^2}
Δx=12ΔvΔt=12aˉΔt2\begin{equation*}\begin{split} \Delta{x} &= \frac{1}{2}\Delta{v}\Delta{t}\\ &= \frac{1}{2}\bar{a}\Delta{t^2} \end{split}\end{equation*}

Displacement when object accelerates with initial velocity

Deriving Δx=v1Δt+12aˉΔt2\Delta{x} = v_1\Delta{t} + \frac{1}{2}\bar{a}\Delta{t^2}
Δx=v1Δt+12ΔvΔt=v1Δt+12aˉΔt2\begin{equation*}\begin{split} \Delta{x} &= v_1\Delta{t} + \frac{1}{2}\Delta{v}\Delta{t} \\ &= v_1\Delta{t} + \frac{1}{2}\bar{a}\Delta{t^2} \end{split}\end{equation*}

Deriving The Other Kinematic Formulas

Deriving v2=v1+aˉΔtv_2 = v_1 + \bar{a}\Delta{t}

Given

aˉ=ΔvΔt=v2v1Δt  (1)\begin{equation*}\begin{split} \bar{a} &= \frac{\Delta{v}}{\Delta{t}}= \frac{v_2 - v_1}{\Delta{t}}\;(1) \end{split}\end{equation*}

We can rearrange v2v_2 from equation (1) like so

aˉ=v2v1ΔtaˉΔt=v2v1v1+aˉΔt=v2v2=v1+aˉΔt\begin{equation*}\begin{split} \bar{a} &= \frac{v_2 - v_1}{\Delta{t}}\\ \bar{a}\Delta{t} &= v_2 - v_1\\ v_1 + \bar{a}\Delta{t} &= v_2\\ \therefore v_2 &= v_1 + \bar{a}\Delta{t} \end{split}\end{equation*}

Therefore

v2=v1+aˉΔt\begin{equation*}\begin{split} v_2 &= v_1 + \bar{a}\Delta{t} \end{split}\end{equation*}

Deriving v22=v12+2aˉΔxv_2^2 = v_1^2 + 2\bar{a}\Delta{x}

Given

aˉ=ΔvΔt  (1)vˉ=ΔxΔt  (2)=v2+v12  (3)\begin{equation*}\begin{split} \bar{a} &= \frac{\Delta{v}}{\Delta{t}}\;(1)\\ \bar{v} &= \frac{\Delta{x}}{\Delta{t}}\;(2)\\ &= \frac{v_2 + v_1}{2}\;(3) \end{split}\end{equation*}

Δt\Delta{t} from equation (1) can be rearranged as

Δt=Δvaˉ=v2v1aˉ  (4)\begin{equation*}\begin{split} \Delta{t} &= \frac{\Delta{v}}{\bar{a}}= \frac{v_2 - v_1}{\bar{a}}\;(4) \end{split}\end{equation*}

Δx\Delta{x} from equation (2) can be rearranged like so

vˉ=ΔxΔtvˉΔt=ΔxΔx=vˉΔt\begin{equation*}\begin{split} \bar{v} &= \frac{\Delta{x}}{\Delta{t}}\\ \bar{v}\Delta{t} &= \Delta{x}\\ \therefore \Delta{x} &= \bar{v}\cdot\Delta{t} \end{split}\end{equation*}

Using the following equations from above

  • vˉ=v2+v12\bar{v} = \frac{v_2 + v_1}{2} from equation (3)
  • Δt=v2v1aˉ\Delta{t} = \frac{v_2 - v_1}{\bar{a}} from equation (4)
Δx=vˉΔt=v2+v12v2v1aˉ=(v2)2(v1)22aˉ  (5)\begin{equation*}\begin{split} \Delta{x} &= \bar{v}\cdot\Delta{t}\\ &= \frac{v_2 + v_1}{2}\cdot\frac{v_2 - v_1}{\bar{a}}\\ &= \frac{(v_2)^2 - (v_1)^2}{2\bar{a}}\;(5) \end{split}\end{equation*}

Rearranging equation (5)

2aˉΔx=(v2)2(v1)2\begin{equation*}\begin{split} 2\bar{a}\Delta{x} &= (v_2)^2 - (v_1)^2 \end{split}\end{equation*}

Rearrange again to obtain the more common form

(v2)2=(v1)2+2aˉΔx\begin{equation*}\begin{split} (v_2)^2 &= (v_1)^2 + 2\bar{a}\Delta{x} \end{split}\end{equation*}

TODO

Two-dimensional Projectile Motion

Conventions

Summary

It's easy to see in the above visualization that tt and xx increase linearly, while yy is non-linear.

Formulas

Displacement & Projectile Position

Generalized

In general (without respect to any xx or yy axis values)

Displacement=Δgeneral=vˉΔt\begin{equation*}\begin{split} \text{Displacement} &= \Delta_{\text{general}}\\ &= \bar{v}\cdot\Delta{t} \end{split}\end{equation*}

Where the distance traveled or displaced is

Displacement=Δgeneral=V1Δt+12aΔt2\begin{equation*}\begin{split} \text{Displacement} &= \Delta_{\text{general}}\\ &= V_1\cdot\Delta{t} + \frac{1}{2}a\Delta{t^2} \end{split}\end{equation*}
In terms of xx and yy axis values
Δx=x2x1Δy=y2y1\begin{equation*}\begin{split} \Delta{x} &= x_2 - x_1\\ \Delta{y} &= y_2 - y_1 \end{split}\end{equation*}
With respect to the yy axis

The displacement of a given projectile in terms of the yy axis is

Δy=Vy1Δt+12ayΔt2\begin{equation*}\begin{split} \Delta{y} = V_{y1}\cdot\Delta{t} + \frac{1}{2}a_y\Delta{t^2} \end{split}\end{equation*}

Since Δy=y2y1\Delta{y} = y_2 - y_1

Δy=Vy1Δt+12ayΔt2y2y1=Vy1Δt+12ayΔt2y2=y1+Vy1Δt+12ayΔt2\begin{equation*}\begin{split} \Delta{y} &= V_{y1}\cdot\Delta{t} + \frac{1}{2}a_y\Delta{t^2}\\ y_2 - y_1 &= V_{y1}\cdot\Delta{t} + \frac{1}{2}a_y\Delta{t^2}\\ y_2 &= y_1 + V_{y1}\cdot\Delta{t} + \frac{1}{2}a_y\Delta{t^2} \end{split}\end{equation*}

Which can be read as (in terms of the yy axis)

the final position  =the initial position  +Vy1Δt+12ayΔt2\begin{equation*}\begin{split} \small{\text{the final position}}\; &= \small{\text{the initial position}}\; + V_{y1}\cdot\Delta{t} + \frac{1}{2}a_y\Delta{t^2} \end{split}\end{equation*}
With respect to the xx axis

The displacement of a given projectile in terms of the xx axis is

Δx=VxΔt+12axΔt2(1)\begin{equation*}\begin{split} \Delta{x} = V_{x}\cdot\Delta{t} + \frac{1}{2}a_x\Delta{t^2} (1) \end{split}\end{equation*}

Note that ax=0a_x = 0(because there is no force acting on the projectile in the horizontal direction), and therefore the initial and final velocities are the same. I.e. it's constant throughout. Therefore in summary

  • ax=0a_x = 0
  • vx1=vx2v_{x1} = v_{x2} and therefore we will simple refer to the velocity vector as as vxv_x.

Therefore we can simplify equation (1) considerably

Δx=VxΔt+0=VxΔt\begin{equation*}\begin{split} \Delta{x} &= V_{x}\cdot\Delta{t} + 0\\ &= V_{x}\cdot\Delta{t} \end{split}\end{equation*}

Solving Projectile Motion Problems

Projectile Motion

In terms of the xx axis

TODO

Δx=x2x1=V0,xt˙vx=v0,x+ax\begin{equation*}\begin{split} \Delta{x} &= x_2 - x_1 = V_{0,x} \dot t\\ v_{x} &= v_{0,x} + a_x \end{split}\end{equation*}

TODO

In terms of the yy axis

TODO

Δy=y2y1=V0,xt˙vy=v0,y+ay\begin{equation*}\begin{split} \Delta{y} &= y_2 - y_1 = V_{0,x} \dot t\\ v_{y} &= v_{0,y} + a_y \end{split}\end{equation*}

TODO

In Summary

Initial Quantities

vx=vocosθvy=vosinθ\begin{equation*}\begin{split} v_x &= v_o\cdot\cos\theta\\ v_y &= v_o\cdot\sin\theta \end{split}\end{equation*}
ay=gax=0\begin{equation*}\begin{split} a_y &= -g\\ a_x &= 0 \end{split}\end{equation*}

Derived expressions

Δx=v0,xΔtvx=v0,x\begin{equation*}\begin{split} \Delta{x} &= v_{0,x} \cdot \Delta{t}\\ v_x &= v_{0,x} \end{split}\end{equation*}
Δy=v0,yΔt12gΔt2vy=v0,ygΔt\begin{equation*}\begin{split} \Delta{y} &= v_{0,y} \cdot \Delta{t} - \frac{1}{2} g \Delta{t^2}\\ v_y &= v_{0,y} - g \Delta{t} \end{split}\end{equation*}

Solutions

ttop=v0sinθgΔymax=v02+sin2θ2gRange=2v02sinθcosθg\begin{equation*}\begin{split} t_{\text{top}} &= \frac{v_0\cdot\sin\theta}{g}\\ \Delta{y_{\text{max}}} &= \frac{v_0^2 + sin^2\theta}{2g}\\ \text{Range} &= \frac{2 \cdot v_0^2 \cdot \sin\theta \cdot \cos\theta}{g}\end{split}\end{equation*}

Projectile Motion from an initial height, with given initial velocity and angle

Given

  • A projectile angle θ\theta
  • The initial height y0y_0
  • The initial velocity v0v_0

We can therefore derive the the initial velocities for xx and yy in terms of the given angle and initial velocity.

v0x=v0cosθv0y=v0sinθ\begin{equation*}\begin{split} v_{0x} &= v_0 \cdot \cos\theta\\ v_{0y} &= v_0 \cdot \sin\theta \end{split}\end{equation*}

Given the general formulas for displacement and velocity

displacement=initial displacement+initial velocityΔt+12aΔt2velocity=initial velocity+aΔt\begin{equation*}\begin{split} \small \text{displacement} &= \text{initial displacement} + \text{initial velocity} \cdot \Delta{t} + \frac{1}{2}a\Delta{t^2}\\ \text{velocity} &= \text{initial velocity} + a\cdot\Delta{t} \end{split}\end{equation*}

Which this information, we will derive specific equations in terms of the xx and yy axes governing the projectile.

In terms of the xx axis
Deriving displacement as a function of time

Using the general formula from above in terms of xx as a function of time.

x(t)=x0+v0xt+12axt2\begin{equation*}\begin{split} x(t) &= x_0 + v_{0x} t + \frac{1}{2}a_x t^2 \end{split}\end{equation*}

Which we can simplify using the following facts

  • From the given depiction of the problem, we know that x(0)=0x(0) = 0.
  • There is no acceleration along the xx axis, so ax=0a_x = 0.
  • v0x=v0cosθv_{0x} = v_0\cdot\cos\theta as shown above.

Therefore

x(t)=0+v0xt+120t2=v0xt=v0cosθt\begin{equation*}\begin{split} x(t) &= 0 + v_{0x}\cdot t + \frac{1}{2}0 t^2\\ &= v_{0x} t\\ &= v_0\cos\theta\cdot t \end{split}\end{equation*}
Deriving velocity
vx=v0x+axt=v0cosθ+0t=v0cosθ\begin{equation*}\begin{split} v_x &= v_{0x} + a_x\cdot t\\ &= v_0\cdot\cos\theta + 0\cdot t\\ &= v_0\cdot\cos\theta \end{split}\end{equation*}
In terms of the yy axis
Deriving displacement as a function of time

Using the general formula from above in terms of yy as a function of time.

y(t)=y0+v0yt+12ayt2\begin{equation*}\begin{split} y(t) &= y_0 + v_{0y} t + \frac{1}{2}a_y t^2 \end{split}\end{equation*}

Which we can simplify using the following facts

  • Initial height is given to us which we will represent as y0y_0, for the sake of generality.
  • Acceleration along the yy axis is the constant for gravity, so ay=9.8ms2a_y = -9.8\frac{\mathrm{m}}{\mathrm{s^2}}.
  • v0y=v0sinθv_{0y} = v_0\cdot\sin\theta as shown above.

Therefore

y(t)=y0+v0yt+12ayt2=y0+v0sinθt+12(9.8)t2=y0+v0sinθt4.9t2\begin{equation*}\begin{split} y(t) &= y_0 + v_{0y} t + \frac{1}{2}a_y t^2\\ &= y_0 + v_0\cdot\sin\theta\cdot t + \frac{1}{2}\left(-9.8\right) t^2\\ &= y_0 + v_0\cdot\sin\theta\cdot t - 4.9 t^2 \end{split}\end{equation*}
Deriving velocity
vy=v0y+ayt=v0y+gt=v0sinθ9.8ms2\begin{equation*}\begin{split} v_y &= v_{0y} + a_y\cdot t = v_{0y} + g \cdot t\\ &= v_0\cdot\sin\theta - 9.8\frac{\mathrm{m}}{\mathrm{s^2}}\end{split}\end{equation*}

In summary
x(t)=v0cosθt  (1)vx=v0cosθ  (2)\begin{equation*}\begin{split} x(t) &= v_0\cos\theta\cdot t\;(1)\\ v_x &= v_0\cdot\cos\theta\;(2) \end{split}\end{equation*}
y(t)=y0+v0sinθt+12gt2  (3)=y0+v0sinθt4.9t2vy=v0sinθ+gt  (4)=v0sinθ9.8ms2t\begin{equation*}\begin{split} y(t) &= y_0 + v_0\cdot\sin\theta\cdot t + \frac{1}{2}g t^2\;(3)\\ &= y_0 + v_0\cdot\sin\theta\cdot t - 4.9 t^2\\ v_y &= v_0\cdot\sin\theta + g \cdot t\;(4)\\ &= v_0\cdot\sin\theta - 9.8\frac{\mathrm{m}}{\mathrm{s^2}}\cdot t \end{split}\end{equation*}

To find the range

We know that at the moment of impact y=0y = 0, therefore we can use equation (3)(3)

y=y0+v0sinθt+12gt2\begin{equation*}\begin{split} y = y_0 + v_0\cdot\sin\theta\cdot t + \frac{1}{2}g t^2 \end{split}\end{equation*}

Rearranging a bit and setting y=0y = 0, we can see that solving for tt will yield the time at which y=0y = 0.

0=12ga  t2+v0sinθb  t+y0c\begin{equation*}\begin{split} 0 = \underbrace{\frac{1}{2}g}_{\text{a}}\;t^2 + \underbrace{v_0\cdot\sin\theta}_{\text{b}}\; t + \underbrace{y_0}_{\text{c}} \end{split}\end{equation*}

Therefore

t=b±b24ac2a=v0sinθ±(v0sinθ)24(12g)y0212g=v0sinθ±(v0sinθ)22gy0g\begin{equation*}\begin{split} t &= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\\ &= \frac{-v_0\cdot\sin\theta\pm\sqrt{\left(v_0\cdot\sin\theta\right)^2 - 4\left(\frac{1}{2}g\right)y_0}}{2\frac{1}{2}g}\\ &= \frac{-v_0\cdot\sin\theta\pm\sqrt{\left(v_0\cdot\sin\theta\right)^2 - 2 g y_0}}{g}\end{split}\end{equation*}

Plugging the solution for tt(and ignoring the negative or non-real solutions for tt) into x(t)x(t) will yield the horizontal displacement (range) at the time y=0y = 0. Therefore:

range  =x(t)  where t is the point at which y=0\begin{equation*}\begin{split} \text{range}\;=x(t)\;\small\text{where $t$ is the point at which $y=0$} \end{split}\end{equation*}
To find the maximum vertical displacement (i.e. peak height)

We begin with equation (4)\text{(4)}

vy=v0sinθ+gt\begin{equation*}\begin{split} v_y &= v_0\cdot\sin\theta + g t \end{split}\end{equation*}

We know that at the moment our projectile crests its trajectory, the vertical component of our projectile will be zero. Therefore vy=0v_y = 0. To find the time, we simply solve for tt.

0=v0sinθ+gtv0sinθ=gtv0sinθg=t  t=v0sinθg\begin{equation*}\begin{split} 0 &= v_0\cdot\sin\theta + g \cdot t\\ -v_0\cdot\sin\theta &= g \cdot t\\ \frac{-v_0\cdot\sin\theta}{g}&= t\\ \therefore\;t &= \frac{-v_0\cdot\sin\theta}{g}\end{split}\end{equation*}

Therefore, knowing the time at which our projectile crests its trajectory, we simply plugin our solution for tt into the function given in equation (4)(4). I.e:

ymax=y0+v0sinθt+12gt2=y0+v0sinθ(v0sinθg)+12g(v0sinθg)2\begin{equation*}\begin{split} y_{\text{max}} &= y_0 + v_0\cdot\sin\theta\cdot t + \frac{1}{2}g t^2\\ &= \small y_0 + v_0\cdot\sin\theta\cdot\left(\frac{-v_0\cdot\sin\theta}{g}\right) + \frac{1}{2}g \left(\frac{-v_0\cdot\sin\theta}{g}\right)^2 \end{split}\end{equation*}
To find the velocity at a given moment of time

Given some time which we will denote as tnt_n, to find the velocity we simply plug in our given values for θ\theta and v0v_0 into equations (2)(2) and (4)(4). I.e.

vx=v0cosθvy=v0sinθ+gt\begin{equation*}\begin{split} v_x &= v_0\cdot\cos\theta\\ v_y &= v_0\cdot\sin\theta + g \cdot t \end{split}\end{equation*}

With the given value for tnt_n, yielding the vector at time t=tnt = t_n, which we will denote as vn\vec{v_n}

A=vy(tn)B=vx(tn)\begin{equation*}\begin{split} A &= v_y(t_n)\\ B &= v_x(t_n)\\ \end{split}\end{equation*}

To define the vector in terms of engineering notation, (i.e. vxi^+vyj^v_x\hat{i} + v_y\hat{j}

vn=Bi^+Aj^\begin{equation*}\begin{split} \vec{v_n} &= B\hat{\textbf{i}} + A\hat{\textbf{j}} \end{split}\end{equation*}

To define the vector in terms of magnitude (which we will denote as vnv_n) and direction (which we will denote as θn\theta_n

vn=A2+B2θn=tan1(AB)\begin{equation*}\begin{split} v_n &= \sqrt{A^2 + B^2}\\ \theta_n &= \tan^{-1}\left(\frac{A}{B}\right) \end{split}\end{equation*}

Range

The distance a projectile travels is called its range.

range  =v2sin(2θ)gstart/end elevation must be the same\begin{equation*}\begin{split} \underbrace {\text{range}\;=\frac{v^2 \cdot sin\left(2\theta\right)}{g}} _{\small{\text{start/end elevation must be the same}}} \end{split}\end{equation*}

Only applies in situations where the projectile lands at the same elevation from which it was fired.

Reasoning About Projectile Motion

Notes

  • An object is in free fall when the only force acting on it is the force of gravity.

Question

Based on the figure, for which trajectory was the object in the air for the greatest amount of time?

Answer

Trajectory A

Explanation

All that matters is the vertical height of the trajectory, which is based on the component of the initial velocity in the vertical direction (v0sinθv_0\sin\theta). The higher the trajectory, the more time the object will be in the air, regardless of the object's range or horizontal velocity.

Problems

The function in this graph represents an object that is speeding up, or accelerating at a constant rate.

When you throw a ball directly upward, what is true about its acceleration after the ball has left your hand?

Answer: The ball’s acceleration is always directed downward.

Wrong: The ball’s acceleration is always directed downward, except at the top of the motion, where the acceleration is zero.

Question
As an object moves in the x-y plane, which statement is true about the object’s instantaneous velocity at a given moment?
Answer
The instantaneous velocity is tangent to the object’s path
Wrong
  • The instantaneous velocity is perpendicular to the object’s path.
  • The instantaneous velocity can point in any direction, independent of the object’s path.
Explanation
As an object moves in the x-y plane the instantaneous velocity is tangent to the object‘s path at a given moment. This is because the displacement vector during an infinitesimally small time interval is always directed along the object’s path and the velocity vector always has the same direction as the displacement vector.

Relative Motion

Galilean transformation of velocity

The velocity v\vec{v} of some object P as seen from a stationary frame must be the sum of w\vec{w} and vF\vec{v_F}

v=w+vF\begin{equation*}\begin{split} \vec{v} &= \vec{w} + \vec{v_F} \end{split}\end{equation*}

Where

SymbolDescription
v\vec{v}Velocity as measured in a stationary frame
w\vec{w}Velocity of an object measured in the moving frame relative to the moving frame
vF\vec{v_F}velocity of the moving frame - with respect to the stationary frame

Galilean transformation of velocity (alternate notation)

Given two reference frames \text{ A } and BB and some object OO. The velocity of the object can be defined in terms of AA or BB as shown

SymbolDescription
vO,A\vec{v_{O,A}}The velocity of OO relative to AA
vO,B\vec{v_{O,B}}The velocity of OO relative to BB
vA,B\vec{v_{A,B}}The velocity of AA relative to BB
vB,A\vec{v_{B,A}}The velocity of BB relative to AA. It locates the origin of AA relative to the origin of BB.

Therefore

vO,B=vO,A+vA,BvO,A=vO,B+vB,A\begin{equation*}\begin{split} \vec{v_{O,B}} &= \vec{v_{O,A}} + \vec{v_{A,B}}\\ \vec{v_{O,A}} &= \vec{v_{O,B}} + \vec{v_{B,A}} \end{split}\end{equation*}

Rotational Motion & Kinematics

Basics

Angular velocity=ω=τf=τT\begin{equation*}\begin{split} \small\text{Angular velocity}\normalsize= \omega &= \tau f\\ &= \frac{\tau}{T}\\ \end{split}\end{equation*}
Centripetal acceleration=aC=v2r=ω2r2r=ω2r\begin{equation*}\begin{split} \small\text{Centripetal acceleration}\normalsize= a_C &= \frac{v^2}{r}\\ &= \frac{\omega^2 r^2}{r}\\ &= \omega^2 r \end{split}\end{equation*}
Period=T=1f=τω\begin{equation*}\begin{split} \text{Period} = T &= \frac{1}{f}= \frac{\tau}{\omega}\end{split}\end{equation*}
vrav\begin{equation*}\begin{split} \vec{v} &\perp \vec{r}\\ \vec{a} &\perp \vec{v}\\ \end{split}\end{equation*}
arar}  They are anti-parallel\begin{equation*}\begin{split} \begin{rcases} \vec{a} &\parallel \vec{r}\\ \vec{a} &\propto \vec{r} \end{rcases}\;\small\text{They are anti-parallel}\normalsize\end{split}\end{equation*}

Auxiliary Formula Reference

Period=T=1f=τω\begin{equation*}\begin{split} \text{Period} = T &= \frac{1}{f}= \frac{\tau}{\omega}\end{split}\end{equation*}
θ=ωt=ω1t+12αt2ω2=ω1+αtω22=ω12+2αθv=1circumference1period=2πrT\begin{equation*}\begin{split} \theta &= \omega \cdot t\\ &= \omega_1 \cdot t + \frac{1}{2}\alpha t^2\\ \omega_2 &= \omega_1 + \alpha \cdot t\\ \omega_2^2 &= \omega_1^2 + 2\cdot\alpha\cdot\theta\\ v &= \small{\frac{1 \text{circumference}}{1 \text{period}}}\normalsize\\ &= \frac{2 \pi r}{T}\end{split}\end{equation*}
FormulaMissingQuantities Present
ω2=ω1+αΔt\omega_2 = \omega_1 + \alpha\Delta{t}Δθ\Delta\thetaω1\omega_1ω2\omega_2α\alphaΔt\Delta{t}
Δθ=(ω2+ω12)Δt\Delta\theta = \left(\frac{\omega_2 + \omega_1}{2}\right)\Delta{t}aaΔθ\Delta\thetaω1\omega_1Δt\Delta{t}ω2\omega_2
Δθ=ω1Δt+12αΔt2\Delta\theta = \omega_1 \Delta{t} + \frac{1}{2}\alpha\Delta{t^2}ω2\omega_2Δθ\Delta\thetaω1\omega_1Δt\Delta{t}α\alpha
Δθ=ω2Δt12αΔt2\Delta\theta = \omega_2\Delta{t} - \frac{1}{2}\alpha\Delta{t^2}ω1\omega_1Δθ\Delta\thetaω2\omega_2Δt\Delta{t}α\alpha
(ω2)2=(ω1)2+2αΔθ(\omega_2)^2 = (\omega_1)^2 + 2\alpha\Delta\thetaΔt\Delta{t}Δθ\Delta\thetaω1\omega_1ω2\omega_2α\alpha
Arc LengthS=radiusrCentral angleθS=rθ\begin{equation*}\begin{split} \underbrace{\small\text{Arc Length}\normalsize}_{S} &= \underbrace{\small\text{radius}\normalsize}_{r} \cdot \underbrace{\small\text{Central angle}\normalsize}_{\theta}\\ S &= r\cdot\theta\\ \end{split}\end{equation*}
Linear displacementΔx=Angular displacementθradiusrΔx=θrLinear velocityv=Angular Velocityωradiusrv=ωrLinear accelerationa=Angular accelerationαradiusra=αr\begin{equation*}\begin{split} \underbrace{\small\text{Linear displacement}\normalsize}_{\Delta{x}} &= \underbrace{\small\text{Angular displacement}\normalsize}_{\theta} \cdot \underbrace{\small\text{radius}\normalsize}_{r}\\ \Delta{x} &= \theta \cdot r\\ \underbrace{\small\text{Linear velocity}\normalsize}_{v} &= \underbrace{\small\text{Angular Velocity}\normalsize}_{\omega} \cdot \underbrace{\small\text{radius}\normalsize}_{r}\\ v &= \omega \cdot r\\ \underbrace{\small\text{Linear acceleration}\normalsize}_{a} &= \underbrace{\small\text{Angular acceleration}\normalsize}_{\alpha} \cdot \underbrace{\small\text{radius}\normalsize}_{r}\\ a &= \alpha \cdot r \end{split}\end{equation*}
Angular displacementθ=Angular speedωtimetθ=ωt\begin{equation*}\begin{split} \underbrace{\small\text{Angular displacement}\normalsize}_{\theta} &= \underbrace{\small\text{Angular speed}\normalsize}_{\omega} \cdot \underbrace{\small\text{time}\normalsize}_{t}\\ \theta &= \omega \cdot t \end{split}\end{equation*}

A particle moves with uniform circular motion if and only if its angular velocity V is constant and unchanging.

Uniform Circular Motion

Uniform means content speed

Forces and Newton's laws of motion

Newton's laws of motion

Normal force and contact force

Balanced and unbalanced forces

Inclined planes and friction

Tension

Test Page

Hello world

Hello world

Hello world

Hello world

Hello world
Hello world

Math

v=[vxvyvz]        v=(vx)2+(vy)2+(vz)2\begin{equation*}\begin{split} \vec{v} &= \begin{bmatrix} v_x & v_y & v_z \end{bmatrix}\\ \;\;\;\; ||\vec{v}|| &= \sqrt{(v_x)^2 + (v_y)^2 + (v_z)^2} \end{split}\end{equation*}
{axayaz \begin{dcases} a & x\\ a & y\\ a & z \end{dcases}
axayaz} \begin{rcases} a & x\\ a & y\\ a & z \end{rcases}
2x5y=83x+9y=12\begin{align*} 2x - 5y &= 8 \\ 3x + 9y &= -12 \end{align*}
2x5y=83x+9y=12\begin{align} 2x - 5y &= 8 \\ 3x + 9y &= -12 \end{align}
2x5y=83x+9y=12\begin{align}\tag{A} 2x - 5y &= 8 \\ 3x + 9y &= -12 \end{align}
2x5y=83x2+9y=3a+c\begin{gather*} 2x - 5y = 8 \\ 3x^2 + 9y = 3a + c \end{gather*}
2x5y=83x2+9y=3a+c\begin{gather} 2x - 5y = 8 \\ 3x^2 + 9y = 3a + c \end{gather}
2x5y=83x2+9y=3a+c\begin{gather}\tag{B} 2x - 5y = 8 \\ 3x^2 + 9y = 3a + c \end{gather}

Drawings

Top-Level Title

Top-level Title

Subsection Title

Some Drawing Entry
Some Other Drawing Entry

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat.

Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor.

A=abf(x)  dxi=1nΔxf(a+(i1)+i2Δx)=i=1nΔxf(a+2i12Δx)i=0n1Δxf(a+(i+1)+i2Δx)=i=0n1Δxf(a+2i+12Δx)\begin{equation}\tag{A}\begin{split} A = \int_{a}^{b} f(x) \;\mathrm{d}x &\approx \sum_{i = 1}^{n}\, \Delta{x}\cdot f\left(a + \frac{(i - 1) + i}{2}\cdot \Delta{x}\right) = \sum_{i = 1}^{n}\, \Delta{x}\cdot f\left(a + \frac{2i - 1}{2}\cdot \Delta{x}\right)\\ &\approx \sum_{i = 0}^{n-1}\, \Delta{x}\cdot f\left(a + \frac{(i + 1) + i}{2}\cdot \Delta{x}\right) = \sum_{i = 0}^{n-1}\, \Delta{x}\cdot f\left(a + \frac{2i + 1}{2}\cdot \Delta{x}\right) \end{split}\end{equation}

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor.

Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus.

Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor.

Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.



Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.


Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.


Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.


Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.

Hello world

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam a nisi eu sapien bibendum scelerisque. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Fusce id blandit lacus, at interdum massa. Aenean a purus aliquam justo varius feugiat. Quisque eget posuere odio, mollis consectetur purus. Morbi iaculis porta diam, quis rhoncus orci dictum tempor. Pellentesque viverra quam erat, sagittis luctus nulla condimentum in. Morbi dui ligula, laoreet eget urna sed, accumsan semper metus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Mauris ex enim, dapibus vitae sollicitudin vitae, placerat et lorem. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam vel viverra ante. Ut ac lacus erat. Nunc eleifend elementum ex a posuere.