Colbyn's School Notes Fall 2022

Navigation - Sub Sections

Table of Contents (Current Page)

Chemistry

Conventions

Given some element \(\mathrm{X}\)

$$\begin{equation} \begin{split} \ce{^{A}_{Z}X} \end{split} \end{equation}$$
$$\begin{equation} \begin{split} \ce{X-A} \end{split} \end{equation}$$

Where

  • \(A = \text{neutrons + protons}\)
  • \(Z = \text{protons}\)
Cations
Positively (+) Charged
Anions
Negatively (−) Charged

Mnemonic

Cations are Pawsitive

Conventions on homework

When a question says, determine the energy of 1 ㏖ of photons, the unit will be ᴶ/㏖.

Units

$$\begin{equation} \begin{split} 1 \mol &= \sci{6.022}{23} \end{split} \end{equation}$$
$$\begin{equation} \begin{split} \small 1 \;\mathrm{amu} &\approx \;\text{protons} + \;\text{neutrons} \end{split} \end{equation}$$

SI Prefixes

Value Prefix Symbol
\(10^{1}\) deca \(\mathrm{da}\)
\(10^{2}\) hecto \(\mathrm{h}\)
\(10^{3}\) kilo \(\mathrm{k}\)
\(10^{6}\) mega \(\mathrm{M}\)
\(10^{9}\) giga \(\mathrm{G}\)
\(10^{12}\) tera \(\mathrm{T}\)
Value Prefix Symbol
\(10^{-1}\) deci \(\mathrm{d}\)
\(10^{-2}\) centi \(\mathrm{c}\)
\(10^{-3}\) mili \(\mathrm{m}\)
\(10^{-6}\) micro \(\mathrm{\mu}\)
\(10^{-9}\) nano \(\mathrm{n}\)
\(10^{-12}\) pico \(\mathrm{p}\)

Classification of Matter

Overview

Mixtures

Heterogeneous mixture

Where the prefix Hetero- means different

Homogeneous mixture

Where the prefix Homo- means same

Quantum Mechanics

The Electromagnetic Spectrum

Overview

Formulas

$$\begin{equation} \begin{split} \mathrm{f} = \nu &= \frac{c}{\lambda} \end{split} \end{equation}$$
$$\begin{equation} \begin{split} \mathrm{E} &= \mathrm{h}\times\mathrm{f}\\ &= \mathrm{h}\frac{\mathrm{c}}{\lambda} \end{split} \end{equation}$$
$$\begin{equation} \begin{split} \mathrm{T} &= \frac{1}{f} \end{split} \end{equation}$$
$$\begin{equation} \begin{split} \lambda &= \frac{c}{f} \end{split} \end{equation}$$

Values

Name Symbol Unit Description Range
Wavelength \(\mathrm{\lambda}\) Any unit for distance Distance between two analogous points Always Positive
Frequency \(f\) or \(\nu\) (nu) \(㎐ = \frac{\text{1 cycle}}{\text{second}}\)\(\mathrm{s}^{-1}\) Number of cycles Always Positive
Energy \(\mathrm{E}\) \(\mathrm{J}\) (joule) Amount of energy (\(\mathrm{E}\)) in a light packet

Constants

Name Symbol Unit Value
Speed of Light \(\mathrm{c}\) \(\v\) \(\mathrm{c} = \sci{3.00}{8}\v\)
Planck's constant \(\mathrm{h}\)
  • Energy multiplied by time
  • joule-seconds
  • \(\mathrm{J}\cdot\mathrm{s}\)
\(\mathrm{h} = \sci{6.626}{-34}\;\mathrm{J}\cdot\mathrm{s}\)

Other Formulas

de Broglie Relation
$$\begin{equation} \begin{split} \lambda &= \frac{\mathrm{h}}{\mathrm{m}\mathrm{v}}\\ \text{where}&\\ m &= \text{mass}\\ v &= \text{velocity} \neq \nu\;\text{(nu)} \end{split} \end{equation}$$
Heisenberg's Uncertainty Principle
$$\begin{equation} \begin{split} \Delta{x} \times \mathrm{m} \Delta{v} \geq \frac{\mathrm{h}}{4\pi} \end{split} \end{equation}$$

Where

  • \(\Delta{x}\) is the uncertainty in position.
  • \(\Delta{v}\) is the uncertainty in velocity.
  • \(\mathrm{m}\) is the mass of the particle.
  • \(\mathrm{h}\) is the plank's constant.

In general it states that the more you know about an electrons position, the less you know about it's velocity.

Energy of an Electron in an Orbital with Quantum Number \(\mathrm{n}\) in a Hydrogen Atom
$$\begin{equation} \begin{split} E_n &= \sci{-2.18}{-18} \mathrm{J} \left(\frac{1}{n^2}\right) \end{split} \end{equation}$$
Change in Energy That Occurs in an Atom When It Undergoes a Transition between Levels

\(n_{\small\text{initial}}\) and \(n_{\small\text{final}}\)

$$\begin{equation} \begin{split} \Delta{E} &= \sci{-2.18}{-18} \mathrm{J} \left(\frac{1}{n^2_f} - \frac{1}{n^2_i}\right) \end{split} \end{equation}$$
  • If \(\Delta{E}\) is negative, energy is being released.
  • If \(\Delta{E}\) is positive, energy is being absorbed.

Electron Configuration

Traditional Chart
Better Method
Examples
Electron configuration for \(_{26}\mathrm{Fe}\)
$$\begin{equation} \begin{split} \ce{\underbrace{1s^2 2s^2 2p^6 3s^2 3p^6}_{\smallText{Equal to Argon}} 4s^2 3d^6} &= \ce{[Ar] 4s^2 3d^6} \end{split} \end{equation}$$

Since the electron configuration for Argon is

$$\begin{equation} \begin{split} \ce{[Ar] = 1s^2 2s^2 2p^6 3s^2 3p^6} \end{split} \end{equation}$$
Electron configuration for \(_{26}\mathrm{Fe}^{+2}\)

Beginning with the electron configuration for \(_{26}\mathrm{Fe}\)

$$\begin{equation} \begin{split} \underbrace{1s^2\; 2s^2\; 2p^6\; 3s^2\; 3p^6}_{\smallText{Equal to Argon}}\; \overbrace{4s^2\; 3d^6}^{\mathclap{ \begin{gathered} \smallText{Which should we remove 2 $\mathrm{e}^{-}$ from?}\\ \smallText{($4s^2$ or $3d^6$)?}\\ \end{gathered} }} &= \ce{[Ar] \underbrace{4s^2\; 3d^6}_{\mathclap{ \begin{gathered} \smallText{Which should we remove 2 $\mathrm{e}^{-}$ from?}\\ \smallText{($4s^2$ or $3d^6$)?}\\ \end{gathered} }} } \end{split} \end{equation}$$

Remove the electrons from the term with the higher electron state. Warning! Do not just remove the electrons from the rightmost term since the rightmost term may be a lower electron state. For instance given \(4s^2\; 3d^6\)

  • \(4s^2\) is in a higher electron state
  • \(3d^6\) is in a lower electron state

As shown

$$\begin{equation} \begin{split} \underbrace{1s^2\; 2s^2\; 2p^6\; 3s^2\; 3p^6}\; \overbrace{4s^{\left(2 - 2\right)}}^{ \mathclap{ \begin{gathered} \smallText{higher state}\\ \smallText{remove $2\mathrm{e^{-}}$} \end{gathered} }}\; \underbrace{3d^6}_{ \mathclap{\smallText{lower state}}}\; &= [\mathrm{Ar}]\; \overbrace{4s^{\left(2 - 2\right)}}^{ \mathclap{ \begin{gathered} \smallText{higher state}\\ \smallText{remove $2\mathrm{e^{-}}$} \end{gathered} }}\; \underbrace{3d^6}_{ \mathclap{\smallText{lower state}}}\\\\ \underbrace{1s^2\; 2s^2\; 2p^6\; 3s^2\; 3p^6}\; \underbrace{3d^6}_{ \mathclap{\smallText{unchanged}}}\; &= [\mathrm{Ar}]\; \underbrace{3d^6}_{ \mathclap{\smallText{unchanged}}} \end{split} \end{equation}$$

Therefore the electron configuration for \(_{26}\mathrm{Fe}^{+2}\) is:

$$\begin{equation} \begin{split} \ce{1s^2 2s^2 2p^6 3s^2 3p^6 3d^6} &= \ce{[Ar] 3d^6} \end{split} \end{equation}$$
Electron configuration for \(_{24}\mathrm{Cr}\)

It would appear that the electron configuration for \(_{24}\mathrm{Cr}\) would be

$$\begin{equation} \begin{split} \overbrace{1s^2\; 2s^2\; 2p^6\; 3s^2\; 3p^6}^{\smallText{Equal to Argon}}\; \underbrace{4s^2\; 3d^4}_{ \mathclap{\smallText{this is wrong!}}}\; &= [\mathrm{Ar}]\; \underbrace{4s^2\; 3d^4}_{ \mathclap{\smallText{this is wrong!}}}\; \end{split} \end{equation}$$

But this is wrong! It's actually

$$\begin{equation} \begin{split} \overbrace{1s^2\; 2s^2\; 2p^6\; 3s^2\; 3p^6}^{\smallText{Equal to Argon}}\; \underbrace{4s^1\; 3d^5}_{ \mathclap{\smallText{notice the superscripts}}}\; &= [\mathrm{Ar}]\; \underbrace{4s^1\; 3d^5}_{ \mathclap{\smallText{notice the superscripts}}}\; \end{split} \end{equation}$$
How-tos
What are the valence electrons?

Given

$$\begin{equation} \begin{split} \ce{1s^2 2s^2 2p^6 3s^2 3p^4} \end{split} \end{equation}$$

The valance electrons will be the ones in the highest energy state. Therefore

$$\begin{equation} \begin{split} \overbrace{1s^2\; 2s^2\; 2p^6}^{\mathclap{ \smallText{Core electrons} }}\; \underbrace{3s^2\;3p^4}_{\mathclap{ \begin{gathered} \smallText{Highest state}\\ \smallText{Therefore these are the valence electrons} \end{gathered} }} \end{split} \end{equation}$$

Therefore there are \(6\) valence electrons.

Given

$$\begin{equation} \begin{split} \ce{[Ne] 3s^2 3p^2} \end{split} \end{equation}$$

The valance electrons will be the ones in the highest energy state. Therefore

$$\begin{equation} \begin{split} [\mathrm{Ne}] \underbrace{3s^2 3p^2}_{\mathclap{ \begin{gathered} \smallText{Highest state}\\ \smallText{Therefore these are the valence electrons} \end{gathered} }} \end{split} \end{equation}$$

Therefore there are \(4\) valence electrons.

Quantum Numbers

Overview
Symbol Description
\(\mathrm{n}\) The principle quantum number
\(l\) The angular momentum quantum number
\(\mathrm{m}_1\) The magnetic quantum number
\(\mathrm{m}_s\) The spin quantum number
The Principle Quantum Number (\(\mathrm{n}\))
Value of \(\mathrm{n}\) Value of \(l\) Orbital Sublevel
\(\mathrm{n} = 1\) \(l = 0\) \(1\mathrm{s}\)
\(\mathrm{n} = 2\) \(l = 0\)\(l = 1\) \(2\mathrm{s}\)\(2\mathrm{p}\)
\(\mathrm{n} = 3\) \(l = 0\)\(l = 1\)\(l = 2\) \(3\mathrm{s}\)\(3\mathrm{p}\)\(3\mathrm{d}\)
\(\mathrm{n} = 4\) \(l = 0\)\(l = 1\)\(l = 2\)\(l = 3\) \(4\mathrm{s}\)\(4\mathrm{p}\)\(4\mathrm{d}\)\(4\mathrm{f}\)
Angular Momentum Quantum Number
Value Result
\(l = 0\) \(\mathrm{s}\)
\(l = 1\) \(\mathrm{p}\)
\(l = 2\) \(\mathrm{d}\)
\(l = 3\) \(\mathrm{f}\)
Value of \(l\) Value of \(\mathrm{m_l}\)
\(l = 0\) \(\mathrm{m_l} = 0\)
\(l = 1\) \(\mathrm{m_l} = -1\)\(\mathrm{m_l} = 0\)\(\mathrm{m_l} = 1\)
\(l = 2\) \(\mathrm{m_l} = -2\)\(\mathrm{m_l} = -1\)\(\mathrm{m_l} = 0\)\(\mathrm{m_l} = 1\)\(\mathrm{m_l} = 2\)
\(l = 2\) \(\mathrm{m_l} = -3\)\(\mathrm{m_l} = -2\)\(\mathrm{m_l} = -1\)\(\mathrm{m_l} = 0\)\(\mathrm{m_l} = 1\)\(\mathrm{m_l} = 2\)\(\mathrm{m_l} = 3\)
Summary
$$\begin{equation} \begin{split} l \leq \mathrm{n} - 1 \end{split} \end{equation}$$
$$\begin{equation} \begin{split} -l \leq \mathrm{m_l} \leq l \end{split} \end{equation}$$
Useful Formulas

The equation for a maximum number of electrons a given energy level can hold given some value for \(n\)

$$\begin{equation} \begin{split} \text{max}_{\mathrm{e}^{-}} &= 2n^2 \end{split} \end{equation}$$

How many orbitals are possible given some value for \(n\)

$$\begin{equation} \begin{split} \text{max}_{\smallText{orbitals}} &= n^2 \end{split} \end{equation}$$
Examples

Light

Interference and Diffraction
Constructive Interference

If two waves of equal amplitude are in phase when they interact—that is, they align with overlapping crests—a wave with twice the amplitude results. This is called constructive interference.

Destructive Interference

If two waves are completely out of phase when they interact—that is, they align so that the crest from one overlaps with the trough from the other—the waves cancel by destructive interference.